已知兩點F1(-
2
,0)
,F2(
2
,0)
,滿足條件|PF2|-|PF1|=2的動點P的軌跡是曲線E,直線 l:y=kx-1與曲線E交于A、B兩點.
(Ⅰ)求k的取值范圍;
(Ⅱ)如果|AB|=6
3
,求直線l的方程.
分析:(Ⅰ)先根據(jù)雙曲線的定義求出曲線E的方程,再根據(jù)直線l:y=kx-1與曲線E交于A、B兩點,把y=kx-1代入曲線E的方程,△>0,x1+x2<0,x1x2>0,求出k的范圍.
(Ⅱ)利用弦長公式,用含k的式子表示|AB|長,再根據(jù)|AB|=6
3
,就可求出k值,得到直線l的方程.
解答:精英家教網(wǎng)解:(Ⅰ)由雙曲線的定義可知,
曲線E是以F1(-
2
,0),F2(
2
,0)
為焦點的雙曲線的左支           
c=
2
,a=1
,易知b=1.
故曲線E的方程為x2-y2=1(x<0)
設(shè)A(x1,y1),B(x2,y2),由題意建立方程組
y=kx-1
x2-y2=1

消去y,得(1-k2)x2+2kx-2=0
又已知直線與雙曲線左支交于兩點A,B,則
1-k2≠0
△=(2k)2+8(1-k2)>0
x1+x2=
-2k
1-k2
<0
x1x2=
-2
1-k2
>0
解得-
2
<k<-1

即k的取值范圍是-
2
<k<-1
.(6分)
(Ⅱ)∵|AB|=
1+k2
•|x1-x2|

=
1+k2
(x1+x2)2-4x1x2

=
1+k2
(
-2k
1-k2
)
2
-4×
-2
1-k2

=2
(1+k2)(2-k2)
(1-k2)2
(8分)
依題意得2
(1+k2)(2-k2)
(1-k2)2
=6
3
,
整理后得28k4-55k2+25=0,解得k2=
5
7
k2=
5
4

-
2
<k<-1
,∴k=-
5
2
,
故直線AB的方程為
5
2
x+y+1=0
點評:本題考查了直線與雙曲線相交的判斷,以及弦長公式的應(yīng)用,做題時要認真分析,用對公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點F1(-
2
,0)
、F2(
2
,0)
,曲線C上的動點P(x,y)滿足
.
PF1
.
PF2
+|
.
PF1
|×|
.
PF2
|=2.
(I)求曲線C的方程;
(II)設(shè)直線l:y=kx+m(k≠0),對定點A(0,-1),是否存在實數(shù)m,使直線l與曲線C有兩個不同的交點M、N,滿足|AM|=|AN|?若存在,求出m的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點F1(-2,0),F(xiàn)2(2,0),曲線C1上的動點P滿足|PF1|+|PF2|=
2
|F1F2|

(1)求曲線C1的方程;
(2)設(shè)曲線C2的方程為|x|+|y|=m(m>0),當(dāng)C1和C2有四個不同的交點時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點F1(-2,0),F(xiàn)2(2,0),曲線C上的動點P滿足|PF1|+|PF2|=
2
|F1F2|

(1)求曲線C的方程;
(2)曲線C上是否存在點M,使得
MF1
MF2
=3
?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩點F1(-
2
,0)
、F2(
2
,0)
,曲線C上的動點P(x,y)滿足
.
PF1
.
PF2
+|
.
PF1
|×|
.
PF2
|=2.
(I)求曲線C的方程;
(II)設(shè)直線l:y=kx+m(k≠0),對定點A(0,-1),是否存在實數(shù)m,使直線l與曲線C有兩個不同的交點M、N,滿足|AM|=|AN|?若存在,求出m的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案