已知sinα=
3
5
,0<α<
π
2
,求cosα和sin(α+
π
4
)的值.
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由條件利用同角三角函數(shù)的基本關(guān)系求得cosα,再利用兩角和的正弦公式求得sin(α+
π
4
)的值.
解答: 解:∵sinα=
3
5
,0<α<
π
2
,
cosα=
1-sin2α
=
1-(
3
5
)
2
=
4
5
,
sin(α+
π
4
)=sinαcos
π
4
+cosαsin
π
4
=
3
5
×
2
2
+
4
5
×
2
2
=
7
2
10
點(diǎn)評:本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和的正弦公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn=4an-4.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=log2a1+log2a2+…+log2an,Tn=
1
c1
+
1
c2
+…+
1
cn
,求使k
n•2n
n+1
≥(2n-9)Tn
恒成立的實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-3,2),
b
=(2,m)且
a
b
,則m=(  )
A、3
B、-3
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)調(diào)查發(fā)現(xiàn),人們長期食用含高濃度甲基汞的魚類會引起汞中毒,其中羅非魚體內(nèi)汞含量比其它魚偏高.現(xiàn)從一批數(shù)量很大的羅非魚中隨機(jī)地抽出15條作樣本,經(jīng)檢測得各條魚的汞含量的莖葉圖(以小數(shù)點(diǎn)前的數(shù)字為莖,小數(shù)點(diǎn)后一位數(shù)字為葉)如圖.《中華人民共和國環(huán)境保護(hù)法》規(guī)定食品的汞含量不得超過1.0ppm.
(Ⅰ)檢查人員從這15條魚中,隨機(jī)抽出3條,求3條中恰有1條汞含量超標(biāo)的概率;
(Ⅱ)若從這批數(shù)量很大的魚中任選3條魚,記ξ表示抽到的汞含量超標(biāo)的魚的條數(shù).以此15條魚的樣本數(shù)據(jù)來估計(jì)這批數(shù)量很大的魚的總體數(shù)據(jù),求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xsinx.
(1)判斷方程f(x)=1在(0,π)內(nèi)實(shí)根的個(gè)數(shù),并說明理由;
(2)設(shè)函數(shù)f(x)在(0,+∞)內(nèi)的全部極值點(diǎn)按從小到大的順序排列為a1,a2,…an…,求證:
π
2
an+1-an<π(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A′B′C′中,D是BC的中點(diǎn),AA′=AB=2
(1)求證:AD⊥B′D;
(2)求三棱錐A′-AB′D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,△PAB是等邊三角形,∠PAC=∠PBC=90°.
(Ⅰ)證明:AC=BC;
(Ⅱ)證明:AB⊥PC;
(Ⅲ)若PC=4,且平面PAC⊥平面PBC,求三棱錐P-ABC體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以AC的中點(diǎn)O為球心、AC為直徑的球面交PD于點(diǎn)M,交PC于點(diǎn)N.
(Ⅰ)求證:平面ABM⊥平面PCD;
(Ⅱ)求直線CD與平面ACM所成的角的正弦值;
(Ⅲ)求點(diǎn)N到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是
 

查看答案和解析>>

同步練習(xí)冊答案