分析:(Ⅰ)根據(jù)題意,首先對原不等式進行變形有x+y+
≤
+
+xy?xy(x+y)+1≤x+y+(xy)
2;再用做差法,讓右式-左式,通過變形、整理化簡可得右式-左式=(xy-1)(x-1)(y-1),又由題意中x≥1,y≥1,判斷可得右式-左式≥0,從而不等式得到證明.
(Ⅱ)首先換元,設(shè)log
ab=x,log
bc=y,由換底公式可得:log
ba=
,log
cb=
,log
ac=
,log
ac=xy,將其代入要求證明的不等式可得:x+y+
≤
+
+xy;又有l(wèi)og
ab=x≥1,log
bc=y≥1,借助(Ⅰ)的結(jié)論,可得證明.
解答:證明:(Ⅰ)由于x≥1,y≥1;則x+y+
≤
+
+xy?xy(x+y)+1≤x+y+(xy)
2;
用作差法,右式-左式=(x+y+(xy)
2)-(xy(x+y)+1)
=((xy)
2-1)-(xy(x+y)-(x+y))
=(xy+1)(xy-1)-(x+y)(xy-1)
=(xy-1)(xy-x-y+1)
=(xy-1)(x-1)(y-1);
又由x≥1,y≥1,則xy≥1;即右式-左式≥0,從而不等式得到證明.
(Ⅱ)設(shè)log
ab=x,log
bc=y,
由換底公式可得:log
ba=
,log
cb=
,log
ca=
,log
ac=xy,
于是要證明的不等式可轉(zhuǎn)化為x+y+
≤
+
+xy;
其中l(wèi)og
ab=x≥1,log
bc=y≥1,
由(Ⅰ)的結(jié)論可得,要證明的不等式成立.
點評:本題考查不等式的證明,要掌握不等式證明常見的方法,如做差法、放縮法;其次注意(Ⅱ)證明在變形后用到(Ⅰ)的結(jié)論,這個高考命題考查轉(zhuǎn)化思想的一個方向.