精英家教網 > 高中數學 > 題目詳情

選修4-1:幾何證明選講
如圖,設C為線段AB的中點,BCDE是以BC為一邊的正方形,以B為圓心,BD為半徑的圓與AB及其延長線相交于點H及K.
(Ⅰ)求證:HC•CK=BC2;
(Ⅱ)若圓的半徑等于2,求AH•AK的值.

(Ⅰ)證明:連接DH,DK,則DH⊥DK,
∴△DHC∽△KDC,∴,
∴DC2=HC•CK,
又DC=BC,∴BC2=HC•CK…(5分)
(Ⅱ)解:連接AD,BD,則AD⊥BD,AD=BD,
∴AD是⊙B的切線,于是AD2=AH•AK,
∵圓的半徑等于2
∴AH•AK=4…(10分)
分析:(Ⅰ)證明△DHC∽△KDC,可得,根據DC=BC,可得結論;
(Ⅱ)連接AD,BD,則可得AD是⊙B的切線,由切割線定理可得AD2=AH•AK,從而可求AH•AK的值.
點評:本題考查幾何證明選講,考查三角形的相似,考查圓的切線性質,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點A,D為PA的中點,
過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應的一個特征向量.
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=t
y=1+2t
(t為參數),判斷直線l和圓C的位置關系.
D.選修4-5:不等式選講
求函數y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結AD交圓O于點E,連結BE與AC交于點F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習冊答案