(2013•黃岡模擬)若sinθ=
3
5
,θ為第二象限角,則tan2θ=
-
24
7
-
24
7
分析:由同角三角函數(shù)的關(guān)系,結(jié)合題意算出tanθ=-
3
4
,再由二倍角的正切公式加以計算,可得tan2θ的值.
解答:解:∵θ為第二象限角,且sinθ=
3
5

∴cosθ=-
1-sin2θ
=-
4
5
,可得tanθ=
sinθ
cosθ
=-
3
4

因此,tan2θ=
2tanθ
1-tan2θ
=
2×(-
3
4
)
1-(-
3
4
)2
=-
24
7

故答案為:-
24
7
點評:本題給出sinθ的值,在θ為第二象限角的情況下求tan2θ的值.著重考查了同角三角函數(shù)的基本關(guān)系和二倍角的正切公式等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃岡模擬)如圖所示程序框圖的輸出的所有值都在函數(shù)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃岡模擬)在區(qū)間[0,π]上隨機取一個數(shù)x,則事件“sinx≥cosx”發(fā)生的概率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃岡模擬)函數(shù)f(x)=2x-sinx的零點個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃岡模擬)挪威數(shù)學(xué)家阿貝爾,曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如圖),利用它們的面積關(guān)系發(fā)現(xiàn)了一個重要的恒等式一阿貝爾公式:
a1b1+a2b2+a3b3+…+anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn
則其中:(I)L3=
a1+a2+a3
a1+a2+a3
;(Ⅱ)Ln=
a1+a2+a3+…+an
a1+a2+a3+…+an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃岡模擬)數(shù)列{an}是公比為
1
2
的等比數(shù)列,且1-a2是a1與1+a3的等比中項,前n項和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項和Tn滿足Tn=nλ•bn+1(λ為常數(shù),且λ≠1).
(Ⅰ)求數(shù)列{an}的通項公式及λ的值;
(Ⅱ)比較
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
1
2
Sn的大。

查看答案和解析>>

同步練習(xí)冊答案