直線與曲線的交點的個數(shù)是        個.
3

試題分析:當 等價于 代入可知5x=24,可知交點個數(shù)為1個,當 等價于 代入可知,則可知滿足交點的個數(shù)有2個,那么綜上可知,交點個數(shù)一共有3個,答案為3.
點評:此題考查了此題考查了直線與橢圓,雙曲線的位置關(guān)系,做題時應認真審題,找出內(nèi)在聯(lián)系,做題時應認真審題,找出內(nèi)在聯(lián)系
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點,是橢圓上動點.

(Ⅰ)求橢圓方程;
(Ⅱ)當時,求面積;
(Ⅲ)求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的左右焦點為,P為雙曲線右支上
的任意一點,若的最小值為8a,則雙曲線的離心率的取值范圍是        。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系O中,直線與拋物線=2相交于AB兩點。
(1)求證:命題“如果直線過點T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線C的焦點為F,準線與x軸交于M點,過M點斜率為k的直線l與拋物線C交于AB兩點,若,則的值      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓(a>b>0)的兩焦點為F1、F2,若橢圓上存在一點Q,使∠F1QF2=120º,橢圓離心率e的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某同學用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點,度量點的坐標,如圖.

(Ⅰ)拖動點,發(fā)現(xiàn)當時,,試求拋物線的方程;
(Ⅱ)設拋物線的頂點為,焦點為,構(gòu)造直線交拋物線于不同兩點,構(gòu)造直線、分別交準線于、兩點,構(gòu)造直線、.經(jīng)觀察得:沿著拋物線,無論怎樣拖動點,恒有.請你證明這一結(jié)論.
(Ⅲ)為進一步研究該拋物線的性質(zhì),某同學進行了下面的嘗試:在(Ⅱ)中,把“焦點”改變?yōu)槠渌岸c”,其余條件不變,發(fā)現(xiàn)“不再平行”.是否可以適當更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應的正確命題;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的一焦點與兩頂點為等邊三角形的三個頂點,則橢圓的長軸長是短軸長的 (      )
A.B.2倍C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以橢圓的中心為頂點,右焦點為焦點的拋物線方程是     .

查看答案和解析>>

同步練習冊答案