已知過曲線上任意一點(diǎn)作直線的垂線,垂足為,且.
⑴求曲線的方程;
⑵設(shè)是曲線上兩個(gè)不同點(diǎn),直線的傾斜角分別為,
當(dāng)變化且為定值時(shí),證明直線恒過定點(diǎn),
并求出該定點(diǎn)的坐標(biāo).
 
⑵當(dāng)時(shí),直線恒過定點(diǎn),當(dāng)時(shí)直線恒過定點(diǎn).

試題分析:⑴要求曲線方程,但是不知道是哪種曲線,所以只能設(shè)點(diǎn).根據(jù),轉(zhuǎn)化為求曲線方程即可;
⑵要證明直線恒過定點(diǎn),必須得有直線方程,所以首先設(shè)出直線方程.又因?yàn)閮蓚(gè)角是直線的傾斜角,所以點(diǎn)也得設(shè)出來.利用韋達(dá)定理,然后討論的范圍變化,證明并得出定點(diǎn)坐標(biāo).
試題解析:⑴設(shè),則,由,;
;所以軌跡方程為;
⑵設(shè),由題意得(否則)且,
所以直線的斜率存在,設(shè)其方程為
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041754145916.png" style="vertical-align:middle;" />在拋物線上,所以,
聯(lián)立消去,得;
由韋達(dá)定理知①;
(1)當(dāng)時(shí),即時(shí),,所以,
,所以.由①知:,所以
因此直線的方程可表示為,即.
所以直線恒過定點(diǎn)
(2)當(dāng)時(shí),由,得==
將①式代入上式整理化簡可得:,所以,
此時(shí),直線的方程可表示為,
,所以直線恒過定點(diǎn);
所以由(1)(2)知,當(dāng)時(shí),直線恒過定點(diǎn),
當(dāng)時(shí)直線恒過定點(diǎn).           12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn)、,且為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).

(1)用、表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;
(2)求的面積,證明的面積與無關(guān),只與有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、,再作與、平行的切線,切點(diǎn)分別為,小張馬上寫出了的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請你說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線x2=4y的焦點(diǎn)為F,過焦點(diǎn)F且不平行于x軸的動直線交拋物線于A、B兩點(diǎn),拋物線在A、B兩點(diǎn)處的切線交于點(diǎn)M.

(1)求證:A、M、B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)設(shè)直線MF交該拋物線于C、D兩點(diǎn),求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知拋物線過點(diǎn),直線,兩點(diǎn),過點(diǎn)且平行于軸的直線分別與直線軸相交于點(diǎn)

(1)求的值;
(2)是否存在定點(diǎn),當(dāng)直線過點(diǎn)時(shí),△與△的面積相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在直線2x-y-4=0上,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線的焦點(diǎn)作直線交拋物線兩點(diǎn),若A到拋物線的準(zhǔn)線的距離為4,則          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C:x2+y2+6x+8y+21=0,拋物線y2=8x的準(zhǔn)線為l,設(shè)拋物線上任意一點(diǎn)P到直線l的距離為m,則m+|PC|的最小值為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線y=k(x+2)(k>0)與拋物線C:y2=8x相交于A、B兩點(diǎn),F為C的焦點(diǎn),若|FA|=2|FB|,則k等于(  )
(A)    (B)     (C)    (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l過拋物線y2=4x的焦點(diǎn)F,交拋物線于A、B兩點(diǎn),且點(diǎn)A、By軸的距離分別為mn,則mn+2的最小值為(  )
A.4B.6C.4 D.6

查看答案和解析>>

同步練習(xí)冊答案