已知函數(shù)f(n)對任意實數(shù)n都滿足條件:數(shù)學公式,若f(1)=8,則f(2009)=________.

8
分析:根據(jù)已知中函數(shù)f(n)對于任意實數(shù)n滿足條件f(n+1)=得出函數(shù)f(n)的周期是2,進而根據(jù)周期函數(shù)的性質,求出f(2009).
解答:因為函數(shù)f(n)對任意實數(shù)n都滿足條件:∵f(n+1)=
∴f(n+1+1)==f(n)
即∴f(n+2)=f(n)
∴f(x)是以2為周期的函數(shù)
∴f(2009)=f(1+2×1004)=f(1)=8
故答案為:8.
點評:本題考查的知識點是函數(shù)的周期性,函數(shù)值,
其中根據(jù)已知中函數(shù)f(n)對于任意實數(shù)n滿足條件f(n+1)=判斷出函數(shù)f(n)是以2為周期的周期函數(shù),是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)對任意的p∈[2,3],x∈[3,+∞)恒成立,則t的最小值為
-
2
3
-
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知函數(shù)y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)對任意的p∈[2,3],x∈[3,+∞)恒成立,則t的最小值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年重慶市南開中學高三(上)11月月考數(shù)學試卷(文科)(解析版) 題型:填空題

已知函數(shù)y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)對任意的p∈[2,3],x∈[3,+∞)恒成立,則t的最小值為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年重慶市南開中學高三(上)11月月考數(shù)學試卷(文科)(解析版) 題型:填空題

已知函數(shù)y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)對任意的p∈[2,3],x∈[3,+∞)恒成立,則t的最小值為   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)對任意的p∈[2,3],x∈[3,+∞)恒成立,則t的最小值為______.

查看答案和解析>>

同步練習冊答案