等差數(shù)列{an}中,a1=-8,它的前16項(xiàng)的平均值是7,若從中抽取一項(xiàng),余下的15項(xiàng)的平均值為7.2,則抽取的是(  )
分析:由已知及等差數(shù)列的求和公式可求S16,然后可求抽取的一項(xiàng)的值,結(jié)合a1,可求a16,進(jìn)而可求d=
1
15
(a16-a1),
代入等差數(shù)列的通項(xiàng)公式可求n
解答:解:由等差數(shù)列的求和公式可得S16=
16(a1+a16)
2
=7×16,
∵7×16-x=7.2×15,
∴x=4,
又a1=-8,
∴a16=22,d=
1
15
(a16-a1)=2,
∴an=-8+(n-1)•2=4,解得n=7
故選A
點(diǎn)評(píng):本題主要考查了等差數(shù)列的通項(xiàng)公式及求和公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項(xiàng)和Sn<0時(shí),n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項(xiàng)和S2n-1=38,則n等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習(xí)冊(cè)答案