【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為15萬(wàn)元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬(wàn)元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬(wàn)元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元.生產(chǎn)線②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒(méi)有出現(xiàn)故障,則生產(chǎn)成本為14萬(wàn)元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬(wàn)元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬(wàn)元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬(wàn)元.
(1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬(wàn)元的概率;
(2)為最大限度節(jié)約生產(chǎn)成本,你會(huì)給工廠建議選擇哪條生產(chǎn)線?請(qǐng)說(shuō)明理由.
【答案】(1)0.0294.(2)應(yīng)選生產(chǎn)線②.見(jiàn)解析
【解析】
(1)由題意轉(zhuǎn)化條件得A工序不出現(xiàn)故障B工序出現(xiàn)故障,利用相互獨(dú)立事件的概率公式即可得解;
(2)分別算出兩個(gè)生產(chǎn)線增加的生產(chǎn)成本的期望,進(jìn)而求出兩個(gè)生產(chǎn)線的生產(chǎn)成本期望值,比較期望值即可得解.
(1)若選擇生產(chǎn)線①,生產(chǎn)成本恰好為18萬(wàn)元,即A工序不出現(xiàn)故障B工序出現(xiàn)故障,故所求的概率為.
(2)若選擇生產(chǎn)線①,設(shè)增加的生產(chǎn)成本為(萬(wàn)元),則的可能取值為0,2,3,5.
,
,
,
,
所以萬(wàn)元;
故選生產(chǎn)線①的生產(chǎn)成本期望值為 (萬(wàn)元).
若選生產(chǎn)線②,設(shè)增加的生產(chǎn)成本為(萬(wàn)元),則的可能取值為0,8,5,13.
,
,
,
,
所以,
故選生產(chǎn)線②的生產(chǎn)成本期望值為 (萬(wàn)元),
故應(yīng)選生產(chǎn)線②.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,
曲線(為參數(shù)),(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(且).
(1)求與的極坐標(biāo)方程;
(2)若與相交于點(diǎn),與相交于點(diǎn),當(dāng)為何值時(shí),最大,并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系,直線過(guò)點(diǎn),且傾斜角為,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓交于、兩點(diǎn),若,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在國(guó)家批復(fù)成立江北新區(qū)后,南京市政府規(guī)劃在新區(qū)內(nèi)的一條形地塊上新建一個(gè)全民健身中心,規(guī)劃區(qū)域?yàn)樗倪呅?/span>ABCD,如圖,,點(diǎn)B在線段OA上,點(diǎn)C、D分別在射線OP與AQ上,且A和C關(guān)于BD對(duì)稱.已知.
(1)若,求BD的長(zhǎng);
(2)問(wèn)點(diǎn)C在何處時(shí),規(guī)劃區(qū)域的面積最小?最小值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)院對(duì)治療支氣管肺炎的兩種方案,進(jìn)行比較研究,將志愿者分為兩組,分別采用方案和方案進(jìn)行治療,統(tǒng)計(jì)結(jié)果如下:
有效 | 無(wú)效 | 合計(jì) | |
使用方案組 | 96 | 120 | |
使用方案組 | 72 | ||
合計(jì) | 32 |
(1)完成上述列聯(lián)表,并比較兩種治療方案有效的頻率;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為治療是否有效與方案選擇有關(guān)?
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)設(shè)函數(shù),,為曲線上任意兩個(gè)不同的點(diǎn),設(shè)直線的斜率為,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線上一點(diǎn)作直線交拋物線E于另一點(diǎn)N.
(1)若直線MN的斜率為1,求線段的長(zhǎng).
(2)不過(guò)點(diǎn)M的動(dòng)直線l交拋物線E于A,B兩點(diǎn),且以AB為直徑的圓經(jīng)過(guò)點(diǎn)M,問(wèn)動(dòng)直線l是否恒過(guò)定點(diǎn).如果有求定點(diǎn)坐標(biāo),如果沒(méi)有請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,且直線與曲線C有兩個(gè)不同的交點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)已知M為曲線C上一點(diǎn),且曲線C在點(diǎn)M處的切線與直線垂直,求點(diǎn)M的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在單調(diào)遞增,求的值;
(2)當(dāng)時(shí),設(shè)函數(shù)的最小值為,求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com