過(guò)雙曲線(xiàn)-=0(b>0,a>0)的左焦點(diǎn)F(-c,0)(c>0),作圓x2+y2=的切線(xiàn),切點(diǎn)為E,延長(zhǎng)FE交雙曲線(xiàn)右支于點(diǎn)P,若=+),則雙曲線(xiàn)的離心率為( )
A.
B.
C.
D.
【答案】分析:由題目可知圓的半徑為,E為切點(diǎn),OE⊥FP,由=+),知平行四邊形OFO'P為菱形,由此能求出雙曲線(xiàn)離心率e=
解答:解:由題目可知圓的半徑為,
∵E為切點(diǎn),
∴OE⊥FP,
又∵=+),
∴OF∥PO',PO∥O'F,
∴四邊形OFO'P為平行四邊形,
∵OE⊥FP,
∴平行四邊形OFO'P為菱形,
∴EO=圓的半徑=,OF=c,∴sin∠EFO==,
∴雙曲線(xiàn)離心率e=
故選C.

點(diǎn)評(píng):本題考查圓與圓錐曲線(xiàn)的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)
x2
a2
-
y2
b2
=1
的離心率e=
2
3
3
,過(guò)A(a,0),B(0,-b)的直線(xiàn)到原點(diǎn)的距離是
3
2

(1)求雙曲線(xiàn)的方程;
(2)已知直線(xiàn)y=kx+5(k≠0)交雙曲線(xiàn)于不同的點(diǎn)C,D且C,D都在以B為圓心的圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A組:已知雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
3
3
,一條漸近線(xiàn)方程為y=
3
3
x

(1)求雙曲線(xiàn)C的方程
(2)過(guò)點(diǎn)(0,
2
)傾斜角為45°的直線(xiàn)l與雙曲線(xiàn)c恒有兩個(gè)不同的交點(diǎn)A和B,求|AB|.
B組:已知雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
3
3
,一條漸近線(xiàn)方程為y=
3
3
x

(1)求雙曲線(xiàn)C的方程
(2)過(guò)點(diǎn)(0,
2
)是否存在一條直線(xiàn)l與雙曲線(xiàn)c有兩個(gè)不同交點(diǎn)A和B且
OA
OB
=2,若存在求出直線(xiàn)方程,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線(xiàn)
x2
a2
+
y2
b2
=1,(a>0,b>0)
的右焦點(diǎn)F,在第一象限內(nèi)作雙曲線(xiàn)漸近線(xiàn)的垂線(xiàn),垂足為D,若FD中點(diǎn)在雙曲線(xiàn)上,則此雙曲線(xiàn)的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年安徽省阜陽(yáng)市太和縣第二職業(yè)高級(jí)中學(xué)高三質(zhì)量檢測(cè)數(shù)學(xué)試卷3(理科)(解析版) 題型:選擇題

過(guò)雙曲線(xiàn)-=0(b>0,a>0)的左焦點(diǎn)F(-c,0)(c>0),作圓x2+y2=的切線(xiàn),切點(diǎn)為E,延長(zhǎng)FE交雙曲線(xiàn)右支于點(diǎn)P,若=+),則雙曲線(xiàn)的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案