8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{{(\frac{1}{2})}^{x},x<0}\end{array}\right.$,若方程f(f(x))-$\frac{3}{2}$=0在實數(shù)集范圍內(nèi)無解,則實數(shù)k的取值范圍是( 。
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{3}$)C.[0,+∞)D.(-$\frac{1}{2}$,-$\frac{1}{4}$]

分析 根據(jù)題意可得x<0時,f(x)=$(\frac{1}{2})^{x}$>0,即可得到k($\frac{1}{2}$)x+$\frac{1}{2}$=0,方程無解,則k≥0,問題得以解決.再討論x≥0時的情況.

解答 解:當x<0時,f(x)=$(\frac{1}{2})^{x}$>0,
∴f(f(x))=k($\frac{1}{2}$)x+2,
∴k($\frac{1}{2}$)x+2-$\frac{3}{2}$=0
∴k($\frac{1}{2}$)x+$\frac{1}{2}$=0,
當k≥0時方程無解,
當x≥0時,f(x)=kx+2,
若k≥0,則f(x)=kx+2≥2,
∴f(f(x))=k(f(x))≥2,
∴方程f(f(x))-$\frac{3}{2}$=0,方程無解,
綜上所述a≥0.
故選:C.

點評 本題考查了函數(shù)的零點與方程的根的關系應用,屬于中檔題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知實數(shù)a,b滿足0<a<1,-1<b<1,則函數(shù)y=$\frac{1}{3}$ax3+ax2+b有三個零點的概率為( 。
A.$\frac{5}{16}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖1,已知矩形ABCD中,$AB=2,BC=2\sqrt{3}$,點E是邊BC上的點,且$CE=\frac{1}{3}CB$,DE與AC相交于點H.現(xiàn)將△ACD沿AC折起,如圖2,點D的位置記為D',此時$D'E=\frac{{\sqrt{30}}}{3}$.
(Ⅰ)求證:D'H⊥平面ABC;
(Ⅱ)求二面角H-D'E-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)$f(x)=(1-k)x+\frac{1}{e^x}$.
(Ⅰ)如果f(x)在x=0處取得極值,求k的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當k=0時,過點A(0,t)存在函數(shù)曲線f(x)的切線,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在數(shù)列{an}中,a2=$\frac{2}{3}$.
(1)若數(shù)列{an}滿足2an-an+1=0,求an;
(2)若a4=$\frac{4}{7}$,且數(shù)列{(2n-1)an+1}是等差數(shù)列,求數(shù)列{$\frac{n}{{a}_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,則$\overrightarrow{AC}$•$\overrightarrow{CD}$等于( 。
A.18B.9C.-8D.-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=2lnx+x2-ax+2(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若存在x0∈(0,1],使得對任意的a∈[-2,0),不等式f(x0)>a2+3a+2-2mea(a+1)(其中e是自然對數(shù)的底數(shù))都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,側(cè)棱垂直于底面的三棱柱ABC-A1B1C1中,D,E分別是AC,CC1的中點,$AB=BC=A{A_1}=\frac{{\sqrt{2}}}{2}AC$.
(1)證明:B1C∥平面A1BD;
(2)求二面角D-A1B-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設M為邊長為4的正方形ABCD的邊BC的中點,N為正方形區(qū)域內(nèi)任意一點(含邊界),則$\overrightarrow{AM}$•$\overrightarrow{AN}$的最大值為( 。
A.32B.24C.20D.16

查看答案和解析>>

同步練習冊答案