定義在R上的函數(shù)f(x)=ax3+bx2+cx+3同時滿足以下條件:
①f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②f′(x)是偶函數(shù);
③f(x)在x=0處的切線與直線y=x+2垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設(shè)g(x)=lnx-
mx
,若存在x∈[1,e],使g(x)<f′(x),求實數(shù)m的取值范圍.
分析:(I)欲求解析式中的三個參數(shù),則尋找三個參數(shù)的三個等式即可,根據(jù)f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù),可得f′(1)=0,根據(jù)f′(x)是偶函數(shù)可求出b,最后根據(jù)f(x)在x=0處的切線與直線y=x+2垂直,建立關(guān)系式即可求出函數(shù)的解析式;
(II)將參數(shù)m分離出來,即存在x∈[1,e],使m>xlnx-x3+x,然后研究不等式右邊的函數(shù)的最小值即可求出m的范圍.
解答:解:(Ⅰ)f'(x)=3ax2+2bx+c
∵f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù),
∴f′(1)=3a+2b+c=0①
由f′(x)是偶函數(shù)得:b=0②
又f(x)在x=0處的切線與直線y=x+2垂直,f'(0)=c=-1③]
由①②③得:a=
1
3
,b=0,c=-1
,即f(x)=
1
3
x3-x+3

(Ⅱ)由已知得:存在x∈[1,e],使lnx-
m
x
x2-1

即存在x∈[1,e],使m>xlnx-x3+x
設(shè)M(x)=xlnx-x3+x
 &x∈[1,e]
,則M'(x)=lnx-3x2+2設(shè)H(x)=M'(x)=lnx-3x2+2,則H′(x)=
1
x
-6x=
1-6x2
x
∵x∈[1,e],∴H'(x)<0,即H(x)在[1,e]遞減
于是,H(x)≤H(1),即H(x)≤-1<0,即M'(x)<0∴M(x)在[1,e]上遞減,∴M(x)≥M(e)=2e-e3
于是有m>2e-e3為所求.
點評:本題主要考查了函數(shù)的單調(diào)性、奇偶性以及在某點處的切線問題,同時考查了存在性問題,是一道函數(shù)綜合題,考查學生的基本功.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點的區(qū)間是( 。

查看答案和解析>>

同步練習冊答案