已知: 平面α⊥平面β, α∩β=l, A∈β, B∈α, AB=2a, AB與α和β所成的角分別為30°和45°, 則AB與l所成的角為_________度.
答案:60
解析:

解:   過A, B分別作AC⊥l, BD⊥l,   因?yàn)棣痢挺虑姚痢搔拢?i>l,   所以 AC⊥α, BD⊥β, 分別連結(jié)BC和AD, 則BC是AB在α上的射影,AD是AB在β內(nèi)的射影, 所以 ∠ABC=30°, ∠BAD=45°,在Rt△ABC中,  因?yàn)?nbsp;AB=2a,所以 AC=a, BC=a

在Rt△ABD中, BD=AD=a, 在Rt△BCD中, CD=a過C作CE∥BD, 過B作BE∥l, CE∩BE=E, 則四邊形BDCE是矩形連AE,  因?yàn)?nbsp;BE⊥AC, BE⊥CE,  所以 BE⊥平面ACE,  所以 BE⊥AE因?yàn)?nbsp;BE∥CD, 即BE∥l,  所以 ∠ABE的大小即AB和L所成角,在Rt△ABE中, cos∠ABE= 所以 ∠ABE=60°    即AB與l 所成角為60°.


提示:

過A, B分別作AC⊥l, BD⊥l, 連BC, AD, 過C作CE∥BD, 過B作BE∥l. CE∩BE=E, 連AE. ∠ABE為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、如圖:已知平面α∥平面β,點(diǎn)A、B在平面α內(nèi),點(diǎn)C、D在β內(nèi),直線AB與CD是異面直線,點(diǎn)E、F、G、H分別是線段AC、BC、BD、AD的中點(diǎn),求證:
(Ⅰ)E、F、G、H四點(diǎn)共面;
(Ⅱ)平面EFGH∥平面β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)V是已知平面M上所有向量的集合,對于映射f:V→V,a∈V,記a的象為f(a).若映射f:V→V滿足:對所有a、b∈V及任意實(shí)數(shù)λ,μ都有f(λa+μb)=λf(a)+μf(b),則f稱為平面M上的線性變換.下列命題中假命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題
①過平面外一定點(diǎn)有且只有一個(gè)平面與已知平面垂直;
②過空間一定點(diǎn)有且只有一條直線與已知平面垂直;
③過平面外一定直線有且只有一個(gè)平面與已知平面垂直;
④垂直于同一平面的兩個(gè)平面可能互相平行,也可能相交;
⑤垂直于同一條直線的兩個(gè)平面平行;
⑥平行于同一個(gè)平面的兩直線不是平行就是相交.
其中正確命題的序號為
②④⑤
②④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖南長沙重點(diǎn)中學(xué)高三上學(xué)期第四次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知下列四個(gè)命題,其中真命題的序號是(    )

① 若一條直線垂直于一個(gè)平面內(nèi)無數(shù)條直線,則這條直線與這個(gè)平面垂直;

② 若一條直線平行于一個(gè)平面,則垂直于這條直線的直線必垂直于這個(gè)平面;

③ 若一條直線平行一個(gè)平面,另一條直線垂直這個(gè)平面,則這兩條直線垂直;

④ 若兩條直線垂直,則過其中一條直線有唯一一個(gè)平面與另外一條直線垂直;

A.①②        B.②③         C.②④         D.③④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011---2012學(xué)年四川省高二10月考數(shù)學(xué)試卷 題型:解答題

如圖:已知平面//平面,點(diǎn)A、B在平面內(nèi),點(diǎn)C、D在內(nèi),直線AB與CD是異面直線,點(diǎn)E、F、G、H分別是線段AC、BC、BD、AD的中點(diǎn),

求證:(Ⅰ)E、F、G、H四點(diǎn)共面;

(Ⅱ)平面EFGH//平面.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案