如圖,△ABC中,D為邊AB上的點(diǎn),∠CAD=60°,CD=21,CB=31,DB=20.
(I)記∠CDB=α,求sinα;
(II)求AD的長(zhǎng).

解:(Ⅰ)在△CBD中,∵CD=21,CB=31,DB=20,由余弦定理可得
.…(6分)
(Ⅱ)記∠ACD=β,則,
在△ACD中,由正弦定理得 ,故有.…(12分)
分析:(Ⅰ)在△CBD中由余弦定理可得cosα的值,從而求得sinα的值.
(Ⅱ)記∠ACD=β,由三角形的外角定理可得β=60°-α,再利用兩角和差的正弦公式求出sinβ的值,△ACD中,由正弦定理求得AD的長(zhǎng).
點(diǎn)評(píng):本題主要考查正弦定理、余弦定理的應(yīng)用,兩角和差的正弦公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,D,E分別是BC,AC的中點(diǎn),設(shè)AD與BE相交于G,求證:AG:GD=BG:GE=2:1.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,D為邊AB上的點(diǎn),∠CAD=60°,CD=21,CB=31,DB=20.
(I)記∠CDB=α,求sinα;
(II)求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•珠海一模)(幾何證明選講選做題)
如圖,△ABC中,D、E分別在邊AB、AC上,CD平分∠ACB,DE∥BC,如果AC=10,BC=15,那么AE=
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�