設(shè)點P是雙曲線數(shù)學(xué)公式與圓x2+y2=a2+b2在第一象限的交點,其中F1,F(xiàn)2分別是雙曲線的左、右焦點,且|PF1|=2|PF2|,則雙曲線的離心率為________.


分析:根據(jù)點P是雙曲線與圓x2+y2=a2+b2在第一象限的交點可得點P到原點的距離,∠F1PF2=90°,再根據(jù)|PF1|=2|PF2|,借助于雙曲線的定義,利用勾股定理,可求得結(jié)論.
解答:∵點P是雙曲線與圓x2+y2=a2+b2在第一象限的交點
∴點P到原點的距離|PO|==c,∠F1PF2=90°,
∵|PF1|=2|PF2|,
∴|PF1|-|PF2|=|PF2|=2a,
∴|PF1|=4a,|PF2|=2a,
∴16a2+4a2=4c2,
∴5a2=c2,
∴e=
故答案為:
點評:本題重點考查圓與雙曲線的性質(zhì),確定|PF1|=4a,|PF2|=2a,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010四川理數(shù))(20)(本小題滿分12分)

已知定點A(-1,0),F(2,0),定直線lx,不在x軸上的動點P與點F的距離是它到直線l的距離的2倍.設(shè)點P的軌跡為E,過點F的直線交EBC兩點,直線AB、AC分別交l于點M、N

(Ⅰ)求E的方程;

(Ⅱ)試判斷以線段MN為直徑的圓是否過點F,并說明理由.【來源:全,品…中&高*考+網(wǎng)】

本小題主要考察直線、軌跡方程、雙曲線等基礎(chǔ)知識,考察平面機襲擊和的思想方法及推理運算能力.

查看答案和解析>>

同步練習(xí)冊答案