分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得n,再由二項式的通項求解.
解答 解:由約束條件x,y滿足$\left\{\begin{array}{l}x+y≤4\\ x-y≥0\\ x≥0\end{array}$,作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y=0}\\{x+y=4}\end{array}\right.$,解得A(2,2),
化目標函數(shù)z=x+2y為y=-$\frac{x}{2}$+$\frac{z}{2}$,由圖可知,當直線y=-$\frac{x}{2}$+$\frac{z}{2}$過A時,直線在y軸上的截距最大,z有最大值為6.
則${(x-\frac{2}{{\sqrt{x}}})^n}$=$({x-\frac{2}{\sqrt{x}})}^{6}$.
由Tr+1=${C}_{6}^{r}$(-2)r•${x}^{6-r-\frac{r}{2}}$.
令6-$\frac{3}{2}r$=0得r=4.
∴則$(x-\frac{2}{\sqrt{x}})^{6}$展開式的常數(shù)項為${C}_{6}^{4}(-2)^{4}$=240.
故答案為:240.
點評 本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法與數(shù)學轉化思想方法,考查二項式定理的應用,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 14米 | B. | 15米 | C. | $\sqrt{51}$米 | D. | $2\sqrt{51}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{35}{16}$ | B. | $\frac{35}{8}$ | C. | $\frac{35}{4}$ | D. | 105 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (∞,-1)∪(2,+∞) | B. | [-1,2] | C. | (∞,-1]∪[2,+∞) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
A. | 7.8 | B. | 8.2 | C. | 9.6 | D. | 8.5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com