求以橢圓的兩頂點為焦點,以橢圓的焦點為頂點的雙曲線方程。
科目:高中數(shù)學 來源: 題型:
(本題16分)已知橢圓C1:上的點滿足到兩焦點的距離之和為4,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點。
(1) 求雙曲線C2的方程;
(2) 若以橢圓的右頂點為圓心,該橢圓的焦距為半徑作一個圓,一條過點P(1,1)直線與該圓相交,交點為A、B,求弦AB最小時直線AB的方程,求求此時弦AB的長。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題16分)已知橢圓C1:上的點滿足到兩焦點的距離之和為4,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點。
(1) 求雙曲線C2的方程;
(2) 若以橢圓的右頂點為圓心,該橢圓的焦距為半徑作一個圓,一條過點P(1,1)直線與該圓相交,交點為A、B,求弦AB最小時直線AB的方程,求求此時弦AB的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com