如圖,多面體ABCDS中,面ABCD為矩形,,  。(I)求多面體ABCDS的體積;(II)求AD與SB所成角的余弦值;(III)求二面角A—SB—D的余弦值。

 

【答案】

(1)(2);(3)

【解析】本試題主要是考查同學(xué)們運(yùn)用點(diǎn)線面的位置關(guān)系,求解異面直線所成的角,以及二面角的求解問(wèn)題。培養(yǎng)了同學(xué)們的空間想象能力和邏輯推理能力和計(jì)算能力的運(yùn)用。

(1)因?yàn)槎嗝骟wABCDS的體積即四棱錐S—ABCD的體積。利用棱錐的體積公式求解得到。

(2)分析; 要求AD與SB所成的角,即求BC與SB所成的角,那么利用平移法得到角,解三角形得到結(jié)論。

(3)利用三垂線定理得到二面角,然后借助于三角形的知識(shí)求解得到。

解:(I)多面體ABCDS的體積即四棱錐S—ABCD的體積。

所以

II)矩形ABCD,

=

 
AD//BC,即BC=a,

要求AD與SB所成的角,即求BC與SB所成的角在中,由(1)知面ABCD。

CD是CS在面ABCD內(nèi)的射影,且

 

BC與SB所成的角的余弦為

從而SB與AD的成的角的余弦為

(III)

面ABCD。

BD為面SDB與面ABCD的交線。

SDB

于F,連接EF從而得:

為二面角A—SB—D的平面角

在矩形ABCD中,對(duì)角線

中,

由(2)知在

為等腰直角三角形且

,

所以所求的二面角的余弦為

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,多面體ABCD-EFG中,底面ABCD為正方形,GD∥FC∥AE,AE⊥平面ABCD,其正視圖、俯視圖如下:精英家教網(wǎng)
(I)求證:平面AEF⊥平面BDG;
(II)若存在λ>0使得
AK
=λ
AE
,二面角A-BG-K的大小為60°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年?yáng)|北師大附中、哈師大附中、遼寧實(shí)驗(yàn)中學(xué)高三第二次模擬考試數(shù)學(xué)理卷 題型:解答題

((本小題滿分12分)

        如圖,多面體ABCD—EFG中,底面ABCD為正方形,GD//FC//AE,AE⊥平面ABCD,其正視圖、俯視圖如下:

   (I)求證:平面AEF⊥平面BDG;

   (II)若存在使得,二面角A—BG—K的大小為,求的值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年浙江省高二下學(xué)期期中考試?yán)頂?shù)試題 題型:選擇題

((本小題滿分12分)

        如圖,多面體ABCD—EFG中,底面ABCD為正方形,GD//FC//AE,AE⊥平面ABCD,其正視圖、俯視圖如下:

   (I)求證:平面AEF⊥平面BDG;

   (II)若存在使得,二面角A—BG—K的大小為,求的值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年?yáng)|北師大附中、哈師大附中、遼寧實(shí)驗(yàn)中學(xué)高二第二次考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

        如圖,多面體ABCD—EFG中,底面ABCD為正方形,GD//FC//AE,AE⊥平面ABCD,其正視圖、俯視圖如下:

   (I)求證:平面AEF⊥平面BDG;

   (II)若存在使得,二面角A—BG—K的大小為,求的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:模擬題 題型:解答題

如圖,多面體ABCD-EFC中,底面ABCD為正方形,GD∥FC∥AE,AE⊥平面ABCD,其正視圖、俯視圖如下,
(Ⅰ)求證:平面AEF⊥平面BDG;
(Ⅱ)若存在λ>0,使,KF與平面ABG所成角為30°,求λ的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案