橢圓的左、右焦點為,的頂點A、B在橢圓上,且邊AB經(jīng)過右焦點,則的周長是_________

 

【答案】

20

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為.

(Ⅰ)求橢圓和雙曲線的標準方程;

(Ⅱ)設(shè)直線、的斜率分別為、,證明;

(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省邯鄲市高三上學(xué)期第二次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)點、分別是橢圓的左、右焦點,為橢圓上任意一點,最小值為.

I求橢圓的方程;

II設(shè)直線(直線、重合,、均與橢圓相切,試探究在軸上是否存在定點,使、的距離之積恒1?若存在,請求出點坐標;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山西大學(xué)附中高三4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為.

(Ⅰ)求橢圓和雙曲線的標準方程;

(Ⅱ)設(shè)直線、的斜率分別為、,證明;

(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二上學(xué)期期末考試理科數(shù)學(xué)試卷 題型:解答題

如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為.

(Ⅰ)求橢圓和雙曲線的標準方程;

(Ⅱ)設(shè)直線的斜率分別為、,證明;

(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊答案