定義:若數(shù)列{An}滿足An+1=,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是 “平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)公式及Tn關(guān)于n的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十第五章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
在數(shù)列{an}中,a1=2,an+1=an+ln(1+),則an=( )
(A)2+lnn(B)2+(n-1)lnn(C)2+nlnn(D)1+n+lnn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十八第六章第四節(jié)練習(xí)卷(解析版) 題型:填空題
設(shè)a>0,b>0,若lga和lgb的等差中項(xiàng)是0,則+的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十五第六章第一節(jié)練習(xí)卷(解析版) 題型:填空題
已知-3<b<a<-1,-2<c<-1,則(a-b)c2的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十五第六章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
已知P:a>b>0,Q:a2>b2,那么P是Q成立的( )
(A)充分不必要條件 (B)必要不充分條件
(C)充分必要條件 (D)既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:填空題
數(shù)列1 ,2 ,3 ,4 ,…的前n項(xiàng)和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
數(shù)列{an}是公差不為0的等差數(shù)列,且a1,a3,a7為等比數(shù)列{bn}的連續(xù)三項(xiàng),則數(shù)列{bn}的公比為( )
(A)(B)4(C)2(D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十九第六章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
推理“①矩形是平行四邊形;②正方形是矩形;③正方形是平行四邊形”中的小前提是( )
(A)① (B)②
(C)③ (D)以上均錯(cuò)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:填空題
設(shè)等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若對(duì)任意自然數(shù)n都有=,則+的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com