已知f(x),g(x)均為R上的奇函數(shù)且f(x)>0解集為(4,10),g(x)>0解集為(2,5),則f(x)•g(x)>0的解集為________.

(4,5)∪(-5,-4)
分析:求f(x)•g(x)>0的解集即求兩函數(shù)函數(shù)值同號(hào)的自變量的取值集合,故對兩函數(shù)函數(shù)值大于0的集合與函數(shù)值小于0的集合進(jìn)行研究得出函數(shù)值符合相同的區(qū)間即所求
解答:由題意知f(x),g(x)均為R上的奇函數(shù)且f(x)>0解集為(4,10),g(x)>0解集為(2,5),
則f(x)<0解集為(-10,-4),g(x)<0解集為(-5,-2),
兩函數(shù)的函數(shù)值同號(hào)的區(qū)間有(4,5)與(-5,-4)
故f(x)•g(x)>0的解集為(4,5)∪(-5,-4)
故答案為(4,5)∪(-5,-4)
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性與奇偶性的綜合,正確理解奇函數(shù)的對稱性是正確判斷函數(shù)符號(hào)的關(guān)鍵,對f(x)•g(x)>0正確轉(zhuǎn)化是解題的題眼.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f(x)=axg(x),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有窮數(shù)列{
f(n)
g(n)
},(n=1,2,…,10)
中任取前k項(xiàng)相加,則前k項(xiàng)和大于
15
16
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f(x)g'(x)>f'(x)g(x),f(x)=ax•g(x),(a>0且a≠1)
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,令an=
f(n)
g(n)
,則使數(shù)列{an}的前n項(xiàng)和Sn超過
15
16
的最小自然數(shù)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f(x)g′(x)>f′(x)g(x),且f(x)=axg(x)(a>0且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,對于有窮數(shù)列
f(n)
g(n)
=(n=1,2,…0)
,任取正整數(shù)k(1≤k≤10),則前k項(xiàng)和大于
15 
16
的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),且f(x)=g(x)ax(a>0且a≠1),f′(x)g(x)<f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則a的值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無需證明).
(2)求使f(x)<0的x取值范圍.
(3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案