【題目】命題p:x>0,x+ >a;命題q:x0∈R,x02﹣2ax0+1≤0.若¬q為假命題,p∧q為假命題,則求a的取值范圍.
【答案】解:不妨設(shè)p為真,要使得不等式恒成立,只需 ,
又∵當(dāng)x>0時(shí), (當(dāng)且僅當(dāng)x=1時(shí)取“=”,∴a<2,
不妨設(shè)q為真,要使得不等式有解只需△≥0,即(﹣2a)2﹣4≥0
解得a≤﹣1或a≥1,
∵q假,且“p∧q”為假命題,故q真p假,
所以 ,
∴實(shí)數(shù)a的取值范圍為a≥2.
【解析】分別解出p,q為真時(shí)的a的范圍,進(jìn)而求出 q真p假時(shí)a的范圍.
【考點(diǎn)精析】本題主要考查了復(fù)合命題的真假的相關(guān)知識(shí)點(diǎn),需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣kx,x∈R(e是自然對(duì)數(shù)的底數(shù)).
(1)若k∈R,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若k>0,討論函數(shù)f(x)在(﹣∞,4]上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校從參加高一年級(jí)期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為150分),數(shù)學(xué)成績(jī)分組及各組頻數(shù)如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在給出的樣本頻率分布表中,求A,B,C,D的值;
(2)估計(jì)成績(jī)?cè)?20分以上(含120分)學(xué)生的比例;
(3)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定成立“二幫一”小組,即從成績(jī)?cè)赱135,150]的學(xué)生中選兩位同學(xué),共同幫助成績(jī)?cè)赱60,75)中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?40分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
樣本頻率分布表:
分組 | 頻數(shù) | 頻率 |
[60,75) | 2 | 0.04 |
[75,90) | 3 | 0.06 |
[90,105) | 14 | 0.28 |
[105,120) | 15 | 0.30 |
[120,135) | A | B |
[135,150] | 4 | 0.08 |
合計(jì) | C | D |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0)的部分圖象如圖所示,下面結(jié)論正確的個(gè)數(shù)是( )
①函數(shù)f(x)的最小正周期是2π
②函數(shù)f(x)的圖象可由函數(shù)g(x)=sin2x的圖象向左平移 個(gè)單位長(zhǎng)度得到
③函數(shù)f(x)的圖象關(guān)于直線x= 對(duì)稱
④函數(shù)f(x)在區(qū)間[ ]上是增函數(shù).
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,在以極點(diǎn)為直角坐標(biāo)原點(diǎn),極軸為軸的正半軸建立的平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,設(shè)曲線經(jīng)過伸縮變換: 得到曲線,若為曲線上任意一點(diǎn),求點(diǎn)到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和直線:,圓C與直線相切,并且圓心C關(guān)于點(diǎn)的對(duì)稱點(diǎn)在圓C上,直線與軸相交于點(diǎn).
(Ⅰ)求圓心C的軌跡E的方程;
(Ⅱ)過點(diǎn)且與直線不垂直的直線與圓心C的軌跡E相交于點(diǎn)A、B,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),是常數(shù).
(Ⅰ)若,且曲線的切線經(jīng)過坐標(biāo)原點(diǎn),求該切線的方程;
(Ⅱ)討論的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){ }是首項(xiàng)為1公比為2的等比數(shù)列,求數(shù)列{bn}前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,△ABC是邊長(zhǎng)為6的正三角形,設(shè) (x,y∈R).
(1)若x=y=1,求| |;
(2)若 =36, =54,求x,y.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com