(2007•肇慶二模)當(dāng)a>0時(shí),計(jì)算
a
-a
a2-x2
dx
=
1
2
πa2
1
2
πa2
分析:欲求定積分
a
-a
a2-x2
dx
,由該定積分的幾何意義可知為半圓:x2+y2=a2(y≥0)的面積.據(jù)此可算出答案.
解答:解:根據(jù)積分的幾何意義,原積分的值即為圓x2+y2=a2在x軸上方的面積.
a
-a
a2-x2
dx
=
1
2
πa2
,
故答案為:
1
2
πa2
點(diǎn)評:本小題主要考查定積分、定積分的幾何意義、圓的面積等基礎(chǔ)知識(shí),考查考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•肇慶二模)已知向量
a
=(1,2),
b
=(2,x),且
a
b
=-1
,則x的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•肇慶二模)命題“?x∈R,x2-2x+4≤0”的否定為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•肇慶二模)已知兩組數(shù)據(jù)x1,x2,…,xn與y1,y2,…,yn,它們的平均數(shù)分別是
.
x
.
y
,則新的一組數(shù)據(jù)2x1-3y1+1,2x2-3y2+1,…,2xn-3yn+1的平均數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•肇慶二模)在空間中,有如下命題:
①互相平行的兩條直線在同一個(gè)平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.
其中正確命題的個(gè)數(shù)為(  )個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•肇慶二模)若x∈[-
π
2
,0]
,則函數(shù)f(x)=cos(x+
π
6
)-cos(x-
π
6
)+
3
cosx
的最小值是(  )

查看答案和解析>>

同步練習(xí)冊答案