如圖,設(shè)P是圓x
2+y
2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=
|PD|,當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程。
試題分析:這是一道典型的關(guān)于軌跡問(wèn)題的題目,通常的解法:①設(shè)出所求軌跡點(diǎn)的坐標(biāo);②找出已知點(diǎn)的坐標(biāo)與其之間的等量關(guān)系;③代入已知點(diǎn)的軌跡方程;④求出所求點(diǎn)的軌跡方程.在此題的解答過(guò)程中,可以先設(shè)出所求點(diǎn)
的坐標(biāo)
,已知點(diǎn)
的坐標(biāo)
,由“點(diǎn)
是
在
軸上的投影”且“
”得到點(diǎn)
與點(diǎn)
坐標(biāo)之間的等量關(guān)系
,又由于點(diǎn)
是已知圓上的點(diǎn),將其坐標(biāo)代入圓方程,經(jīng)整理即可得到所點(diǎn)
的軌跡方程.
試題解析:設(shè)
的坐標(biāo)為
,
的坐標(biāo)為
,則由已知得
5分
因?yàn)辄c(diǎn)
在圓上,所以
,即所求點(diǎn)
的軌跡
的方程為
. 10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知橢圓
的離心率為
,且經(jīng)過(guò)點(diǎn)
. 過(guò)它的兩個(gè)焦點(diǎn)
,
分別作直線(xiàn)
與
,
交橢圓于A、B兩點(diǎn),
交橢圓于C、D兩點(diǎn),且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
若曲線(xiàn)
為焦點(diǎn)在
軸上的橢圓,則實(shí)數(shù)
,
滿(mǎn)足( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知F
1、F
2是橢圓
+
=1(a>b>0)的左右焦點(diǎn),P是橢圓上一點(diǎn),∠F
1PF
2=90°,求橢圓離心率的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知拋物線(xiàn)
與橢圓
有相同的焦點(diǎn)
,
是兩曲線(xiàn)的公共點(diǎn),若
,則此橢圓的離心率為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)
、
是曲線(xiàn)
上的點(diǎn),
,則必有 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知橢圓
的左、右焦點(diǎn)分別為
,若橢圓上存在點(diǎn)P使
,則該橢圓的離心率的取值范圍為_(kāi)__
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線(xiàn) C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線(xiàn),l與曲線(xiàn)C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
若點(diǎn)P是以F
1,F(xiàn)
2為焦點(diǎn)的橢圓
+
=1(a>b>0)上一點(diǎn),且
·
=0,tan∠PF
1F
2=
則此橢圓的離心率e=( )
查看答案和解析>>