在平面直角坐標(biāo)系中,點(diǎn)P是由不等式組
x≥0
y≥0
x+y≥1
所確定的平面區(qū)域內(nèi)的動(dòng)點(diǎn),Q是直線2x+y=0上任意一點(diǎn),O為坐標(biāo)原點(diǎn),則|
OP
+
OQ
|的最小值為( 。
A、
5
5
B、
2
3
C、
2
2
D、1
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合結(jié)合向量的基本運(yùn)算即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域:
設(shè)P(x,y),
∵Q在直線2x+y=0上,
∴設(shè)Q(a,-2a),
OP
+
OQ
=(x+a,y-2a),
則|
OP
+
OQ
|=
(x+a)2+(y-2a)2
,
設(shè)z=|
OP
+
OQ
|=
(x+a)2+(y-2a)2
,
則z的幾何意義為平面區(qū)域內(nèi)的動(dòng)點(diǎn)P到動(dòng)點(diǎn)Q的距離的最小值,
由圖象可知當(dāng)P位于點(diǎn)(0,1)時(shí),
Q為P在直線2x+y=0的垂足時(shí),
z取得最小值為d=
|1|
22+12
=
1
5
=
5
5

故選:A.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用平面向量的基本運(yùn)算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

Ak={x|x=kt+
1
kt
,
1
k2
≤t≤1},其中k=2,3,…,2014,則所有Ak的交集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m是平面α的一條斜線,點(diǎn)A∈α,l為過(guò)點(diǎn)A的一條動(dòng)直線,那么下列情形不可能出現(xiàn)的是( 。
A、l∥m,l⊥α
B、l⊥m,l⊥α
C、l⊥m,l∥α
D、l∥m,l∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是(  )
A、若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行
B、若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行
C、若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行
D、若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l∥平面α,直線m?平面α,則l與m的位置關(guān)系為( 。
A、平行B、相交
C、異面D、平行或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給岀四個(gè)命題:
(1)若一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,則這兩個(gè)角相等;
(2)α,β 為兩個(gè)不同平面,直線a?α,直線b?α,且a∥β,b∥β,則α∥β;
(3)α,β 為兩個(gè)不同平面,直線m⊥α,m⊥β  則α∥β;
(4)α,β 為兩個(gè)不同平面,直線m∥α,m∥β,則α∥β.
其中正確的是( 。
A、(1)B、(2)
C、(3)D、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在復(fù)平面內(nèi),點(diǎn)A表示復(fù)數(shù)z,則圖中表示z的共軛復(fù)數(shù)的點(diǎn)是( 。
A、AB、BC、CD、D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n=2,3,4,…).Sn為數(shù)列{bn}的前n項(xiàng)和,且
4Sn=bnbn+1,b1=2(n=1,2,3,…).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=bn2
1
3an
+
2
3
,求數(shù)列{cn}的前n項(xiàng)的和Pn;
(3)證明對(duì)一切n∈N*,有
n
k=1
ak2
7
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線m垂直于x軸(垂足為T),與拋物線交于不同的兩點(diǎn)P、Q,且
F1P
F2Q
=-5.
(Ⅰ)求點(diǎn)T的橫坐標(biāo)x0;
(Ⅱ)若橢圓C以F1,F(xiàn)2為焦點(diǎn),且F1,F(xiàn)2及橢圓短軸的一個(gè)端點(diǎn)圍成的三角形面積為1.
①求橢圓C的標(biāo)準(zhǔn)方程;
②過(guò)點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),設(shè)
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案