精英家教網 > 高中數學 > 題目詳情
已知等比數列{an}中,a3=3,a10=384,則該數列的通項an=   
【答案】分析:根據已知知道數列為等比數列,并且知道第三項和第十項,利用a10=a3•q7可以得出公比,進而利用公式求出通項公式即可.
解答:解:已知數列為等比數列,得q7==128=27,故q=2,∴利用通項公式an=a3•qn-3=3•2n-3
故答案為3•2n-3
點評:本題主要求解等比數列的通項公式,屬于數列最基本的試題,更應該熟練掌握.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、已知等比數列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}滿足a1•a7=3a3a4,則數列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數列的第5項,第3項,第2項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=log2an,求數列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習冊答案