【題目】某工廠制作仿古的桌子和椅子,需要木工和漆工兩道工序.已知生產(chǎn)一把椅子需要木工4個(gè)工作時(shí),漆工2個(gè)工作時(shí);生產(chǎn)一張桌子需要木工8個(gè)工作時(shí),漆工1個(gè)工作時(shí).生產(chǎn)一把椅子的利潤(rùn)為1500元,生產(chǎn)一張桌子的利潤(rùn)為2000元.該廠每個(gè)月木工最多完成8000個(gè)工作時(shí)、漆工最多完成1300個(gè)工作時(shí).根據(jù)以上條件,該廠安排生產(chǎn)每個(gè)月所能獲得的最大利潤(rùn)是__________元.

【答案】2100000

【解析】

設(shè)每天生產(chǎn)桌子張,椅子張,利潤(rùn)總額為目標(biāo)函數(shù)為,作出可行域,把直線向右上方平移至的位置時(shí),直線經(jīng)過(guò)可行域上的點(diǎn),此時(shí)取最大值,解方程坐標(biāo)為 ,所以每天應(yīng)生產(chǎn)桌子張,椅子張才能獲得最大利潤(rùn),最大利潤(rùn)為故答案為.

【方法點(diǎn)晴】本題主要考查利用線性規(guī)劃解決現(xiàn)實(shí)生活中的最佳方案及最大利潤(rùn)問(wèn)題,屬于難題題. 求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校舉行了一次安全教育知識(shí)競(jìng)賽,競(jìng)賽的原始成績(jī)采用百分制,已知高三學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見表.

原始成績(jī)

85分及以上

70分到84

60分到69

60分以下

等級(jí)

優(yōu)秀

良好

及格

不及格

為了解該校高三年級(jí)學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì)按照的分組作出頻率分布直方圖如圖所示,其中等級(jí)為不及格的有5人,優(yōu)秀的有3人.

1)求和頻率分布直方圖中的的值;

2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若該校高三學(xué)生共1000人,求競(jìng)賽等級(jí)在良好及良好以上的人數(shù);

3)在選取的樣本中,從原始成績(jī)?cè)?/span>80分以上的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,求抽取的2名學(xué)生中優(yōu)秀等級(jí)的學(xué)生恰好有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且.某同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=|NF1|=…=a。類似地:P是橢圓 (a>b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且,則|OM|的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形的邊長(zhǎng)為2, . 是邊上一點(diǎn),線段于點(diǎn).

(1)若的面積為,求的長(zhǎng);

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽,共有900名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問(wèn)題:

分組

頻數(shù)

頻率

50.5~60.5

4

0.08

60.5~70.5

0.16

70.5~80.5

10

80.5~90.5

16

0.32

90.5~100.5

合計(jì)

50

(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));

(Ⅱ)補(bǔ)全頻數(shù)條形圖;

(Ⅲ)若成績(jī)?cè)?/span>75.5~85.5分的學(xué)生為二等獎(jiǎng),問(wèn)獲得二等獎(jiǎng)的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形和矩形所在平面互相垂直 ,

(1)求二面角的大;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,過(guò)的平面與側(cè)面的交線為,且滿足表示的面積.

(1)證明: 平面;

(2)當(dāng)時(shí),二面角的余弦值為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面為矩形的四棱錐中, .

(1)證明:平面平面;

(2)若異面直線所成角為, , ,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市小型機(jī)動(dòng)車駕照科二考試中共有5項(xiàng)考察項(xiàng)目,分別記作,,⑤.

1)某教練將所帶10名學(xué)員科二模擬考試成績(jī)進(jìn)行統(tǒng)計(jì)(如圖1所示),并打算從恰有2項(xiàng)成績(jī)不合格的學(xué)員中任意抽出2人進(jìn)行補(bǔ)測(cè)(只測(cè)不合格的項(xiàng)目),求補(bǔ)測(cè)項(xiàng)目種類不超過(guò)3項(xiàng)的概率;

2)如圖2,某次模擬演練中,教練要求學(xué)員甲倒車并轉(zhuǎn)向90°,在汽車邊緣不壓射線AC與射線BD的前提下,將汽車駛?cè)胫付ǖ耐\囄?/span>. 根據(jù)經(jīng)驗(yàn),學(xué)員甲轉(zhuǎn)向90°后可使車尾邊緣完全落在線段CD,且位于CD內(nèi)各處的機(jī)會(huì)相等.CA="BD=0.3m," AB="2.4m." 汽車寬度為1.8m, 求學(xué)員甲能按教練要求完成任務(wù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案