11.已知函數(shù)f(x)=a3-x+1,(a>0且a≠1),則函數(shù)f(x)的圖象恒過(guò)定點(diǎn)(3,2).

分析 已知函數(shù)f(x)=a3-x+1,根據(jù)指數(shù)函數(shù)的性質(zhì),求出其過(guò)的定點(diǎn)

解答 解:∵函數(shù)f(x)=a3-x+1,其中a>0,a≠1,
令3-x=0,可得x=3,a3-x=1,
∴f(x)=1+1=2,
∴點(diǎn)的坐標(biāo)為(3,2),
故答案為:(3,2)

點(diǎn)評(píng) 此題主要考查指數(shù)函數(shù)的性質(zhì)及其特殊點(diǎn),是一道基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列函數(shù)中為偶函數(shù)的是( 。
A.y=x2-2xB.y=|lgx|C.y=3x+3-xD.y=$\frac{x}{{2}^{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=x2-2x,g(x)=2x+a,若對(duì)于任意x1∈[-1,2],均存在x2∈[-1,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,2]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知二次方程x2+x-1=0的兩根為α,β,求值:
(1)α33;    
(2)α22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.下列命題中,正確命題的序號(hào)是 ②③⑤⑥.
①過(guò)點(diǎn)(1,2)且在坐標(biāo)軸上的截距相等的直線方程是x+y=3;
②函數(shù)f(x)的定義域是R,f(-1)=2,對(duì)?x∈R,f′(x)>2,則f(x)>2x+4的解集為(-1,+∞);
③根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-6=0的一個(gè)根所在的區(qū)間為(2,3);
x-10123
ex0.3712.727.3920.09
x+656789
④已知雙曲線的漸近線方程是5x±12y=0,則以雙曲線的頂點(diǎn)為焦點(diǎn),以雙曲線的焦點(diǎn)為頂點(diǎn)的橢圓的離心率e=$\frac{12}{13}$;
⑤設(shè)函數(shù)f(x)=2lnx+2x-a,若存在b∈[1,e],使得f[f(b)]=b成立,則實(shí)數(shù)a的取值范圍是[1,2+e];
⑥函數(shù)f(x)=(1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$)cos2x在區(qū)間[-3,3]上零點(diǎn)有5個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知全集U={x|x≤4},集合A={x|-2<x<3},集合B={x|-3<x≤2},求:
(1)A∪B
(2)∁UA
(3)(∁UB)∩A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知角α的終邊經(jīng)過(guò)點(diǎn)(3,-4),則cosα的值為( 。
A.-$\frac{3}{4}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列程序的功能是( 。
S=1
i=1
WHILE S<=2012
i=i+2
S=S×i
WEND
PRINT i
END.
A.計(jì)算1+3+5+…+2012
B.計(jì)算1×3×5×…×2012
C.求方程1×3×5×…×i=2012中的i值
D.求滿足1×3×5×…×i>2012的最小整數(shù)i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.把正整數(shù)1,2,3,4,5,6,…按某種規(guī)律填入如表:
261014
145891213
371115
按這種規(guī)律連續(xù)填寫,2015出現(xiàn)在第3行,第1511 列.

查看答案和解析>>

同步練習(xí)冊(cè)答案