設(shè)函數(shù)f(x)=
x
1-
1-x
(x<0)
ex+a(x≥0)
,要使f(x)在(-∞,+∞)內(nèi)連續(xù),則實數(shù)a=
 
考點:分段函數(shù)的應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)在某處連續(xù)的定義,利用分段函數(shù)在某處連續(xù)時,則兩段的函數(shù)值在此處相等,求出a的值.
解答: 解:∵函數(shù)f(x)=
x
1-
1-x
(x<0)
ex+a(x≥0)
,
若函數(shù)f(x)在(-∞,+∞)內(nèi)連續(xù),
∵x<0時,y=
x
1-
1-x
=
x(1+
1-x
)
1-(1-x)
=1+
1-x
,
∴e0+a=2,即 a=1,
故答案為:1.
點評:本題主要考查函數(shù)在某處連續(xù)的定義,利用分段函數(shù)在某處連續(xù)時,則兩段的函數(shù)值在此處相等,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
8
x2+lnx+2,g(x)=x.
(Ⅰ)求函數(shù)F(x)=f(x)-2•g(x)的極值點;
(Ⅱ)若函數(shù)F(x)=f(x)-2•g(x)在[et,+∞)(t∈Z)上有零點,求t的最大值;
(Ⅲ)若bn=g(n)
1
g(n+1)
(n∈N*),試問數(shù)列{bn}中是否存在bn=bm(m≠n)?若存在,求出所有相等的兩項;若不存在,請說明理由.(e為自然對數(shù)的底數(shù)約為2.718).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若B=
π
4
,0<A<
π
2
,且a2,b2,c2成等差數(shù)列,則tanA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,3),
b
=(x,-6),若
a
b
,則實數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-4x+8
x-2
的極大值點與極小值點分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a3,a7是方程x2+4x+2=0的兩根,則a5的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)為偶函數(shù),且在(0,+∞)上是減函數(shù),又f(3)=0,則
f(x)+f(-x)
2x
<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-4x+1在區(qū)間(0,1)內(nèi)恰有一個零點,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:
4
x-1
≤-1,條件q:x2+x<a2-a,且¬q的一個充分不必要條件是¬p,則a的取值范圍是( 。
A、[-2,-
1
2
]
B、[
1
2
,2]
C、[-1,2]
D、(-2,
1
2
]∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案