.設點P是橢圓上的一點,點M、N分別是兩圓:上的點,則的最小值、最大值分別為(    )
A.6,8B.2,6
C.4,8D.8,12
C
解:依題意,橢圓的焦點分別是兩圓(的圓心,
所以(|PM|+|PN|)max=2×3+2=8,
(|PM|+|PN|)min=2×3-2=4,
故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)為橢圓的左、右頂點,直線軸交于點,點是橢圓上異于
的動點,直線分別交直線兩點.證明:恒為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓 .有相同的離心率,過點的直線,依次交于A,C,D,B四點(如圖).當直線的上頂點時, 直線的傾斜角為.

(1)求橢圓的方程;
(2)求證:;
(3)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓交于兩點.若原點在以線段為直徑的圓內,
求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

a,b為大于1的正數(shù),并且,如果的最小值為m,則滿足的整點的個數(shù)為                                   (    )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)設橢圓: 過點(0,4),離心率為
(1)求的方程;
(2)求過點(3,0)且斜率為的直線被所截線段的中點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系xOy中,已知中心在原點,離心率為的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設P是橢圓E上一點,過P作兩條斜率之積為的直線l1,l2.當直線l1,l2都與圓C相切時,求P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若焦點在軸上的橢圓的離心率為,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的左右焦點分別為,線段被拋物線的焦點分成5:3兩段,則此橢圓的離心率為
A.B.C.D.

查看答案和解析>>

同步練習冊答案