盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球.規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得-1分.現(xiàn)從盒內(nèi)任取3個球
(Ⅰ)求取出的3個球中至少有一個紅球的概率;
(Ⅱ)求取出的3個球得分之和恰為1分的概率;
(Ⅲ)設(shè)ξ為取出的3個球中白色球的個數(shù),求ξ的分布列和數(shù)學(xué)期望.
【答案】分析:(Ⅰ)可以求其反面,一個紅球都沒有,求出其概率,然后求取出的3個球中至少有一個紅球的概率,從而求解;
(Ⅱ)可以記“取出1個紅色球,2個白色球”為事件B,“取出2個紅色球,1個黑色球”為事件C,求出事件B和C的概率,從而求出3個球得分之和恰為1分的概率;
(Ⅲ)ξ可能的取值為0,1,2,3,分別求出其概率,然后再根據(jù)期望的公式進(jìn)行求解;
解答:解:(Ⅰ)取出的3個球中至少有一個紅球的概率:
          (3分)
(Ⅱ)記“取出1個紅色球,2個白色球”為事件B,“取出2個紅色球,1個黑色球”為事件C,
則 .…(6分)
(Ⅲ)ξ可能的取值為0,1,2,3.…(7分)
,

,
.…(11分)
ξ的分布列為:
ξ123
P
ξ的數(shù)學(xué)期望(13分);
點(diǎn)評:此題主要考查離散型隨機(jī)變量的期望與方差,互斥事件與對立事件的定義,計算的時候要仔細(xì),是一道基礎(chǔ)題;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球.規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得-1分.現(xiàn)從盒內(nèi)任取3個球.
(Ⅰ)求取出的3個球顏色互不相同的概率;
(Ⅱ)求取出的3個球得分之和恰為1分的概率;
(Ⅲ)設(shè)ξ為取出的3個球中白色球的個數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球.規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得-1分.現(xiàn)從盒內(nèi)任取3個球.
(Ⅰ)求取出的3個球顏色互不相同的概率;
(Ⅱ)求取出的3個球得分之和是正數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津模擬)盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球.規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得-1分.現(xiàn)從盒內(nèi)任取3個球
(Ⅰ)求取出的3個球中至少有一個紅球的概率;
(Ⅱ)求取出的3個球得分之和恰為1分的概率;
(Ⅲ)設(shè)ξ為取出的3個球中白色球的個數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省杭州市高二5月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球. 規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得-1分 . 現(xiàn)從盒內(nèi)任取3個球

(Ⅰ)求取出的3個球中至少有一個紅球的概率;

(Ⅱ)求取出的3個球得分之和恰為1分的概率;

(Ⅲ)設(shè)為取出的3個球中白色球的個數(shù),求的分布列.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建安溪梧桐中學(xué)、俊民中學(xué)高二下期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球. 規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得-1分 . 現(xiàn)從盒內(nèi)任取3個球

(Ⅰ)求取出的3個球中至少有一個紅球的概率;

(Ⅱ)求取出的3個球得分之和恰為1分的概率;

(Ⅲ)設(shè)為取出的3個球中白色球的個數(shù),求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

同步練習(xí)冊答案