(本小題16分)

已知拋物線(xiàn)的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸為軸,焦點(diǎn)在直線(xiàn)上,直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),為拋物線(xiàn)上一動(dòng)點(diǎn)(不同于),直線(xiàn)分別交該拋物線(xiàn)的準(zhǔn)線(xiàn)于點(diǎn)

(1)求拋物線(xiàn)方程;

(2)求證:以為直徑的圓經(jīng)過(guò)焦點(diǎn),且當(dāng)為拋物線(xiàn)的頂點(diǎn)時(shí),圓與直線(xiàn)相切。

 

【答案】

(1)

(2)證明見(jiàn)解析

【解析】(1)依題意,焦點(diǎn),拋物線(xiàn)方程為。……………4分

(2)由,,

 ∴。            ……………………6分

設(shè),則,

直線(xiàn),令

,即, ……………………8分

同理,直線(xiàn),令,得

,……………………10分

,∴,

∴以為直徑的圓經(jīng)過(guò)焦點(diǎn)。  ……………………13分

當(dāng)為拋物線(xiàn)的頂點(diǎn)時(shí),,可得中點(diǎn),即圓心,

,,∴,即,

∴圓與直線(xiàn)相切。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題16分)

已知函數(shù)).

(1)求函數(shù)的值域;

(2)①判斷函數(shù)的奇偶性;②用定義判斷函數(shù)的單調(diào)性;

(3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題16分)

已知函數(shù)).

(1)求函數(shù)的值域;

(2)①判斷函數(shù)的奇偶性;②用定義判斷函數(shù)的單調(diào)性;

(3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題16分)

已知是定義在上的偶函數(shù),且時(shí),

(1)求,

(2)求函數(shù)的表達(dá)式;

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一第一學(xué)期期末測(cè)試數(shù)學(xué)試卷 題型:解答題

(本小題16分)

已知△OAB的頂點(diǎn)坐標(biāo)為,,, 點(diǎn)P的橫坐標(biāo)為14,且,點(diǎn)是邊上一點(diǎn),且.

(1)求實(shí)數(shù)的值與點(diǎn)的坐標(biāo);

(2)求點(diǎn)的坐標(biāo);

(3)若為線(xiàn)段上的一個(gè)動(dòng)點(diǎn),試求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案