17.已知三次函數(shù)f(x)=$\frac{a}{3}{x^3}+\frac{2}{x^2}$+cd+d(a<b)的導(dǎo)函數(shù)為f′(x),導(dǎo)函數(shù)f′(x)的導(dǎo)函數(shù)為f″(x),如果對(duì)任意的x∈R,不等式f′(x)≥f″(x)恒成立,則$\frac{b^2}{{{a^2}+2{c^2}}}$的最大值為$\sqrt{6}$-2.

分析 由已知可得ax2+(b-2a)x+(c-b)≥0恒成立,即△=(b-2a)2-4a(c-b)=b2+4a2-4ac≤0,且a>0,進(jìn)而利用基本不等式可得最大值.

解答 解:∵f′(x)=ax2+bx+c,
∴f′′(x)=2ax+b,
∵對(duì)任意x∈R,不等式f′(x)≥f′′(x)恒成立,
∴ax2+bx+c≥2ax+b恒成立,
即ax2+(b-2a)x+(c-b)≥0恒成立,
故△=(b-2a)2-4a(c-b)=b2+4a2-4ac≤0,且a>0,
即b2≤4ac-4a2,∴4ac-4a2≥0,∴c≥a>0,⇒$\frac{^{2}}{{a}^{2}+2{c}^{2}}≤\frac{4ac-4{a}^{2}}{{a}^{2}+2{c}^{2}}=\frac{4(\frac{c}{a}-1)}{1+2(\frac{c}{a})^{2}}$=$\frac{4(\frac{c}{a}-1)}{2(\frac{c}{a}-1)^{2}+4(\frac{c}{a}-1)+3}$
∴當(dāng)$\frac{c}{a}-1=0時(shí),即a=c,b=0$,則$\frac{b^2}{{{a^2}+2{c^2}}}$=0,
$\frac{C}{a}-1>0$時(shí),$\frac{b^2}{{{a^2}+2{c^2}}}$≤$\frac{4}{2(\frac{c}{a}-1)+\frac{3}{\frac{c}{a}-1}+4}≤\frac{4}{2\sqrt{\sqrt{6}}+4}$=$\sqrt{6}-2$,
故答案為$\sqrt{6}-2$

點(diǎn)評(píng) 本題考查了一元二次不等式恒成立問(wèn)題,基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在無(wú)窮等比數(shù)列{an}中,a1=$\sqrt{3}$,a2=1,則$\underset{lim}{n→∞}$(a1+a3+a5+…+a2n-1)=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.二次函數(shù)y=x2+x-1,則函數(shù)的零點(diǎn)個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.拋物線x=ay2(a≠0)的焦點(diǎn)坐標(biāo)為( 。
A.($\frac{1}{a}$,0)B.($\frac{1}{2a}$,0)
C.($\frac{1}{4a}$,0)D.a>0 時(shí)為($\frac{1}{4a}$,0),a<0 時(shí)為(-$\frac{1}{4a}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)函數(shù)f (x)的定義域?yàn)镮,若對(duì)?x∈I,都有f(x)<x,則稱f(x)為T(mén)-函數(shù);
若對(duì)?x∈I,都有f[f(x)]<x,則稱f(x)為Γ一函數(shù).給出下列命題:
①f (x)=ln(l+x)(x≠0)為τ-函數(shù);
②f (x)=sinx (0<x<π)為Γ一函數(shù);
③f (x)為τ-函數(shù)是(x)為Γ一函數(shù)的充分不必要條件;
④?a∈R,使得f (x)=ax2-1既是τ一函數(shù)又是Γ一函數(shù).
其中真命題有①②④.(把你認(rèn)為真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中點(diǎn),N是BC的中點(diǎn),△A1MC1是等腰三角形,D為CC1的中點(diǎn),E為BC上的一點(diǎn).
(1)求證:M,N,A1,C1四點(diǎn)共面;
(2)若DE∥平面A1MC1,求$\frac{CE}{EB}$;
(3)求直線BC和平面A1MC1所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}sinωxsin(ωx+\frac{π}{2})-{cos^2}ωx+\frac{1}{2}$(ω>0)的周期為π.
(1)求ω.
(2)若將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位后,再將得到的圖象上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=|lgx|.若a<b且f(a)=f(b),則a+2b的取值范圍是( 。
A.$(2\sqrt{2},+∞)$B.$[2\sqrt{2},+∞)$C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=log2(ax-bx),且f(1)=1,f(2)=log212;
(1)求a,b的值;   
(2)判斷函數(shù)f(x)在定義域內(nèi)的單調(diào)性并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案