5.如圖,一個底面半徑為R的圓柱被與底面成30°二面角的平面所截,截面是一個橢圓,則該橢圓的焦距是( 。
A.RB.2RC.$\frac{{\sqrt{3}}}{3}$RD.$\frac{{2\sqrt{3}}}{3}$R

分析 根據(jù)圓柱的直徑算出橢圓的短軸長,再由二面角的平面角等于30°,利用三角函數(shù)定義可算出橢圓的長軸.由此再結(jié)合橢圓基本量間的關(guān)系,不難算出此橢圓的焦距.

解答 解:∵圓柱的底面半徑為R,∴橢圓的短軸b=R.
又∵橢圓所在平面與圓柱底面所成角為30°
∴cos30°=$\frac{R}{a}$,可得a=$\frac{2\sqrt{3}}{3}$R
根據(jù)橢圓基本量間的關(guān)系,得c=$\sqrt{\frac{12}{9}{R}^{2}-{R}^{2}}$=$\frac{\sqrt{3}}{3}$R,
得橢圓的焦距為2c=$\frac{2\sqrt{3}}{3}$R.
故選:D.

點評 本題以一個平面截圓柱,求截得橢圓的焦距,著重考查了平面與平面所成角的含義和橢圓的簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列推理是歸納推理的是( 。
A.由a1=1,an=3n-1,求出s1,s2,s3,猜出數(shù)列{an}的前n項和的表達(dá)式
B.由于f(x)=xsinx滿足f(-x)=-f(x)對?x∈R都成立,推斷f(x)=xsinx為偶函數(shù)
C.由圓x2+y2=1的面積S=πr2,推斷:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的面積S=πab
D.由平面三角形的性質(zhì)推測空間四面體的性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式|2x-3|<5的解集為(  )
A.(-1,4)B.(-∞,-1)∪(4,+∞)C.(-∞,4)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.觀察下列等式
(1+x+x21=1+x+x2,
(1+x+x22=1+2x+3x2+2x3+x4,
(1+x+x23=1+3x+6x2+7x3+6x4+3x5+x6,
(1+x+x24=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8

若(1+x+x26=a0+a1x+a2x2+…+a12x12,則a2=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|2x-1|.
(Ⅰ)求f(x)≤3x的解集;
(Ⅱ)求f(x)+|x+1|≤1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,已知$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2}{tanB}$,則cosB的最小值為( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓O的半徑長為3,圓內(nèi)一點A到圓心O的距離是$\sqrt{3}$,點P是圓上的動點,當(dāng)∠OPA取最大值時,PA=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.曲線的ρ=sinθ-3cosθ-1直角坐標(biāo)方程為x4+y4+2x2y2+2$({x}^{2}+{y}^{2})^{\frac{3}{2}}$-8x2+6xy=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知四棱錐P-ABCD的三視圖如圖所示,E是側(cè)棱PC上的動點.
(1)求四棱錐P-ABCD的體積;
(2)是否不論點E在何位置,都有BD⊥AE?證明你的結(jié)論;
(3)若點E為PC的中點,求二面角E-BD-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案