已知橢圓的左、右焦點分別為F1和F2 ,以F1 、F2為直徑的圓經(jīng)過點M(0,b).(1)求橢圓的方程;(2)設直線l與橢圓相交于A,B兩點,且.求證:直線l在y軸上的截距為定值。
(1)(2).直線l在y軸上的截距為定值
【解析】本試題主要是考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的綜合運問題,以及韋達定理的綜合運用。
(1)利用橢圓的性質(zhì)可知參數(shù)a,b,c的值,求解得到橢圓的方程。
(2)因為,所以直線與x軸不垂直.設直線的方程為,然后直線與橢圓聯(lián)立方程組,借助于韋達定理來解決
(1)由題設知,又,所以,故橢圓方程為;……2分
(2)因為,所以直線與x軸不垂直.設直線的方程為,由得,所以
…………………6分
又,所以,即,
,
整理得,
即,…………10分
因為,所以,
展開整理得,即.直線l在y軸上的截距為定值
科目:高中數(shù)學 來源: 題型:
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓的左、右焦點分別為,其右準線上上存在點(點在 軸上方),使為等腰三角形.
⑴求離心率的范圍;
⑵若橢圓上的點到兩焦點的距離之和為,求的內(nèi)切圓的方程.查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期假期檢測考試理科數(shù)學試卷 題型:解答題
已知橢圓的左、右焦點分別為,, 點是橢圓的一個頂點,△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點分別作直線,交橢圓于,兩點,設兩直線的斜率分別為,,且,證明:直線過定點().
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省三明市高三上學期三校聯(lián)考數(shù)學理卷 題型:解答題
(本題滿分14分) 已知橢圓的左、右焦點分別為F1、F2,其中
F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年云南省德宏州高三高考復習數(shù)學試卷 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點分別為、,離心率,右準線方程為.
(I)求橢圓的標準方程;
(II)過點的直線與該橢圓交于M、N兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com