已知函數(shù)f(x)=數(shù)學(xué)公式若f(2-a2)>f(a),則實(shí)數(shù)a的取值范圍為_(kāi)_______.

(-2,1)
分析:先根據(jù)二次函數(shù)的解析式分別研究分段函數(shù)在各自區(qū)間上的單調(diào)性,從而得到函數(shù)f(x)的單調(diào)性,由此性質(zhì)轉(zhuǎn)化求解不等式,解出參數(shù)范圍即可.
解答:函數(shù)f(x),當(dāng)x≥0 時(shí),f(x)=x2+4x,由二次函數(shù)的性質(zhì)知,它在[0,+∞)上是增函數(shù),
當(dāng)x<0時(shí),f(x)=4x-x2,由二次函數(shù)的性質(zhì)知,它在(-∞,0)上是增函數(shù),
該函數(shù)連續(xù),則函數(shù)f(x) 是定義在R 上的增函數(shù)
∵f(2-a2)>f(a),
∴2-a2>a
解得-2<a<1
實(shí)數(shù)a 的取值范圍是(-2,1)
故答案為:(-2,1)
點(diǎn)評(píng):本題是奇偶性與單調(diào)性結(jié)合的一類最主要的題型,利用單調(diào)性將不等式f(2-a2)>f(a)轉(zhuǎn)化為一元二次不等式,求出實(shí)數(shù)a 的取值范圍,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是( 。
A、命題:“已知函數(shù)f(x),若f(x+1)與f(x-1)均為奇函數(shù),則f(x)為奇函數(shù),”為直命題B、“x>1”是“|x|>1”的必要不充分條件C、若“p且q”為假命題,則p,q均為假命題D、命題p:”?x∈R,使得x2+x+1<0”,則?p:”?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x),若在[a,b]上有f(a)f(b)<0,則y=f(x)在(a,b)內(nèi)必有零點(diǎn)
×
×

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動(dòng)點(diǎn)”;若f(f(x))=x,則稱x為f(x)的“穩(wěn)定點(diǎn)”.記集合A={x|f(x)=x},B={x|f(f(x))=x}
(1)已知A≠∅,若f(x)是在R上單調(diào)遞增函數(shù),是否有A=B?若是,請(qǐng)證明.
(2)記|M|表示集合M中元素的個(gè)數(shù),問(wèn):(i)若函數(shù)f(x)=ax2+bx+c(a≠0),若|A|=0,則|B|是否等于0?若是,請(qǐng)證明,(ii)若|B|=1,試問(wèn):|A|是否一定等于1?若是,請(qǐng)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•綿陽(yáng)二模)已知函數(shù)f(x),若對(duì)給定的三角形ABC,它的三邊的長(zhǎng)a、b、c均在函數(shù)f(x)的定義域內(nèi),都有f(a)、f(b)、f(c)也為某三角形的三邊的長(zhǎng),則稱f(x)是△ABC的“三角形函數(shù)”.下面給出四個(gè)命題:
①函數(shù)f1(x)=
x
,x∈(0,+∞)是任意三角形的“三角形函數(shù)”;
②若定義在(O,+∞)上的周期函數(shù)f2(x)的值域也是(0,+∞),則f2(x)是任意三角形的“三角形函數(shù)”;
③若函數(shù)f3(x)=x3-3x+m在區(qū)間(
2
3
,
4
3
)上是某三角形的“三角形函數(shù)”,則m的取值范圍是(
62
27
,+∞)
④若a、b、c是銳角△ABC的三邊長(zhǎng),且a、b、c∈N+,則f4(x)=x2+lnx(x>0)是△ABC的“三角形函數(shù)”.
以上命題正確的有
①④
①④
(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省中山一中高三(上)第五次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)=,若f(a)=,則實(shí)數(shù)a的值為( )
A.-1
B.
C.-1或
D.1或-

查看答案和解析>>

同步練習(xí)冊(cè)答案