設(shè)x1,x2是a2x2+bx+1=0的兩實(shí)根;x3,x4是ax2+bx+1=0的兩實(shí)根.若x3<x1<x2<x4,則實(shí)數(shù)a的取值范圍是________.

a>1
分析:設(shè)f(x)=ax2+bx+1=0,方程f(x)=0為一二次函數(shù)其兩實(shí)根為x1,x2(x1<x2),又x3,x4是ax2+bx+1=0的兩實(shí)根,若x3<x1<x2<x4成立,即x1,x2在兩其根之間,可由根的分布的相關(guān)知識(shí)將這一關(guān)系轉(zhuǎn)化為不等式,解出a的范圍.
解答:x1,x2是方程ax2+bx+1=0的根,∴a2x12+bx1+1=0
∴bx1=-a2x12-1,同理bx2=-a2x22-1
∴f(x1)=ax12+bx1+1=ax12-a2x12=(a-a2)x12
同理f(x2)=(a-a2)x22
要使x3<x1<x2<x4,只需 ,∴a>1
,解集為φ
故a的取值范圍a>1
故答案為:a>1.
點(diǎn)評:本題考查一元二次方程的根的分布與系數(shù)的關(guān)系,解答的關(guān)鍵是對二次函數(shù)圖象的特征的把握,是一道關(guān)于二次函數(shù)的綜合性很強(qiáng)的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2是函數(shù)f(x)=
a
3
x3+
b
2
x2-a2x(a,b∈R,a>0)
的兩個(gè)極值點(diǎn),且|x1|+|x2|=2.
(1)求a與b的關(guān)系式;
(2)令函數(shù)g(a)=
1
3
a3-
1
4
a2+a+1
,求函數(shù)g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2是函數(shù)f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
的兩個(gè)極值點(diǎn),且|x1-x2|=2.
(Ⅰ)證明:0<a≤1;
(Ⅱ)證明:|b|≤
4
3
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
3
x2+
b
2
x2-a2x(a>0)

(1)證明:f(x)必有兩個(gè)極值點(diǎn);
(2)設(shè)x1,x2是f(x)兩個(gè)極值點(diǎn)且|x1|+|x2|=2,求a的取值范圍并求b的最大值;
(3)當(dāng)a=3,b=4時(shí),數(shù)列{an}滿足:a1=e-1(e為自然對數(shù)的底數(shù))且an+1an=f(an+1)+9an+1,an>0(n∈N*),求證:(a1+1)(a2+1)•…•(an+1)<e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2是函數(shù)f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
的兩個(gè)極值點(diǎn),且|x1|+|x2|=2.
(1)用a表示b2,并求出a的取值范圍.
(2)證明:|b|≤
4
3
9

(3)若函數(shù)h(x)=f′(x)-2a(x-x1),證明:當(dāng)x1<x<2且x1<0時(shí),|h(x)|≤4a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2是函數(shù)f(x)=
a
3
x3+
b
2
x2-a2x(a>0)的兩個(gè)極值點(diǎn),且|x1|+|x2|=1.
(1)證明:0<a≤
1
4
;
(2)證明:|b|≤
3
18

(3)設(shè)g(x)=f′(x)-a(x-x1),x1<x<1,x1<0,求證:|g(x)|≤a.

查看答案和解析>>

同步練習(xí)冊答案