【題目】已知拋物線y2=4 x的焦點為F,A、B為拋物線上兩點,若 =3 ,O為坐標原點,則△AOB的面積為( )
A.8
B.4
C.2
D.
【答案】B
【解析】解:拋物線y2=4 x的焦點為F( ,0),由拋物線的定義可知:|AF|=|AD|,|BC|=|BF|,
過B做BE⊥AD,
由 =3 ,則丨 丨=丨 丨,
∴|AB|=2|AE|,由拋物線的對稱性,不妨設直線的斜率為正,
∴直線AB的傾斜角為60°,直線AB的方程為y= (x﹣ )= x﹣3,
聯(lián)立直線AB與拋物線的方程可得: ,整理得:3x2﹣10 x+9=0,
由韋達定理可知:x1+x2= ,則丨AB丨=x1+x2+p= +2 = ,
而原點到直線AB的距離為d= = ,
則三角形△AOB的面積S= 丨AB丨d= =4 ,
∴當直線AB的傾斜角為120°時,同理可求S=4 ,
故選B.
根據(jù)拋物線的定義,不難求出,|AB|=2|AE|,由拋物線的對稱性,不妨設直線的斜率為正,所以直線AB的傾斜角為60°,可得直線AB的方程,與拋物線的方程聯(lián)立,求出A,B的坐標,即可求出△AOB的面積.
科目:高中數(shù)學 來源: 題型:
【題目】橢圓Γ: =1(a>b>0)的左右焦點分別為F1 , F2 , 焦距為2c,若直線y= 與橢圓Γ的一個交點M滿足∠MF1F2=2∠MF2F1 , 則該橢圓的離心率等于 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)判斷并證明)在)上的單調(diào)性;
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點E是PD的中點.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角E—AC—D的大小;
(Ⅲ)求點P到平面EAC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商品在最近100天內(nèi)的價格f(t)與時間t的函數(shù)關系式是
銷售量g(t)與時間t的函數(shù)關系式是g(t)=- + (0≤t≤100),求這種商品的日銷售額的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,當時, ,且對任意正實數(shù),滿足.
(1)求;
(2)證明在定義域上是減函數(shù);
(3)如果,求滿足不等式的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=1,且an+1= (n∈N*).
(1)證明:數(shù)列{ }是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設bn=anan+1 , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為減少空氣污染,某市鼓勵居民用電(減少燃氣或燃煤),采用分段計費的方法計算:電費每月用電不超過100度時,按每度0.57元計算;每月用電量超過100度時,其中的100度仍按原標準收費,超過的部分每度按0.5元計算.
(Ⅰ)設月用電度時,應交電費元,寫出關于的函數(shù)關系式;
(Ⅱ)小明家第一季度繳納電費情況如下:
月份 | 一月 | 二月 | 三月 | 合計 |
交費金額 | 76元 | 63元 | 45.6元 | 184.6元 |
問小明家第一季度共用電多少度?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市春節(jié)7家超市的廣告費支出x(萬元)和銷售額y(萬元)數(shù)據(jù)如下,
超市 | A | B | C | D | E | F | G |
廣告費支出x | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額y | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)請根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關于x的線性回歸方程; = x+
(2)用二次函數(shù)回歸模型擬合y與x的關系,可得回歸方程: =﹣0.17x2+5x+20. 經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請用R2說明選擇哪個回歸模型更合適.并用此模型預測A超市廣告費支出為3萬元時的銷售額,
參考數(shù)據(jù)及公式: =8, =42. xiyi=2794, x =708,
= = , = ﹣ x.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com