已知|
a
|=
2
,|
b
|=1,
a
b
的夾角為135°.
(1)求(
a
+
b
)•(2
a
-
b
)的值;
(2)若k為實(shí)數(shù),求|
a
+k
b
|的最小值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:(1)利用平面向量數(shù)量積的運(yùn)算,即可求(
a
+
b
)•(2
a
-
b
)的值;
(2)先求模,再利用配方法,即可求|
a
+k
b
|的最小值.
解答: 解:(1)因?yàn)閨
a
|=
2
,|
b
|=1,
a
b
的夾角為135°,
所以(
a
+
b
)•(2
a
-
b
)=2
a
2
-
b
2
+
a
b
=4-1+
2
×1×(-
2
2
)=2
.    …(6分)
(2)|
a
+k
b
|2=
a
2
+k2
b
2
+2k
a
b
=k2-2k+2=(k-1)2+1.…(10分)
當(dāng)k=1時(shí),|
a
+k
b
|2
的最小值為1,…(12分)
|
a
+k
b
|
的最小值為1.      …(14分)
點(diǎn)評(píng):本題考查平面向量數(shù)量積的運(yùn)算,考查配方法的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
ax-1
+3(a>0且a≠1),若f(1)=4,則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心在拋物線y2=2x上,且過(guò)定點(diǎn)(2,0)的圓有最小面積,則該圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=
1
x-2
的定義域?yàn)?div id="f9fhlfz" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,邊長(zhǎng)為2的正方形ABCD中,E是AB邊的中點(diǎn),F(xiàn)是BC邊上的一點(diǎn),對(duì)角線AC分別交DE、DF于M、N兩點(diǎn),將△DAE及△DCF折起,使A、C重合于G點(diǎn),構(gòu)成如圖2所示的幾何體.
(Ⅰ)求證:GD⊥EF;
(Ⅱ)若EF∥平面GMN,求三棱錐G-EFD的體積VG-EFD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它的一個(gè)焦點(diǎn)在拋物線y2=48x的準(zhǔn)線上,則雙曲線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,M,N,E,F(xiàn),F(xiàn)分別是棱B1C1,A1D1,D1D,AB的中點(diǎn).
(1)求證:A1E⊥平面ABMN;
(2)求異面直線A1E與MF所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax2+4(a-3)x+5在區(qū)間(-∞,2)上是減函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x•lnx,g(x)=ax3-
1
2
x-
2
3e

(1)求f(x)的單調(diào)增區(qū)間和最小值;
(2)若函數(shù)y=f(x)與函數(shù)y=g(x)在交點(diǎn)處存在公共切線,求實(shí)數(shù)a的值;
(3)若x∈(0,e2]時(shí),函數(shù)y=f(x)的圖象恰好位于兩條平行直線l1:y=kx;l2:y=kx+m之間,當(dāng)l1與l2間的距離最小時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案