設(shè)f(x)==________.

答案:1
提示:

=1.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知=(cos+sin,-sin),=(cos-sin,2cos).

 (1)設(shè)f(x)=·,求f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)設(shè)有不相等的兩個實(shí)數(shù)x1,x2∈,且f(x1)=f(x2)=1,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax5bx3cx+7(其中ab,c為常數(shù),x∈R),若f(-2 011)=-17,則f(2 011)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河北衡水中學(xué)高一第二學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知=(cos+sin,-sin),=(cos-sin,2cos).

(1)設(shè)f(x)·,求f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)設(shè)有不相等的兩個實(shí)數(shù)x1,x2,且f(x1)f(x2)=1,求x1x2的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆湖北長陽自治縣第一中學(xué)高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知=(cos+sin,-sin),=(cos-sin,2cos).

(1)設(shè)f(x)=·,求f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)設(shè)有不相等的兩個實(shí)數(shù)x1,x2,且f(x1)=f(x2)=1,求x1x2的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因為過點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習(xí)冊答案