精英家教網 > 高中數學 > 題目詳情

【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調查,得到如下列聯表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為

(1)請將上述列聯表補充完整;

(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;

(3)已知在被調查的學生中有5名來自甲班,其中3名喜歡游泳,現從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

【答案】(1)列聯表見解析;(2)的把握認為喜歡游泳與性別有關;(3.

【解析】

試題分析:(1)根據題意完成列聯表;(2)根據給出的公式求出相關系數的值,對比臨界值表,若,則有的把握認為喜歡游泳與性別有關,否則無關;(3名學生中喜歡游泳的名學生記為,另外名學生記為,任取名學生,列出所有可能情況,從中找出從這名學生中隨機抽取人,恰好有人喜歡游泳的情況,作比即得所求的概率.

試題解析:(1)因為在100人中隨機抽取1人抽到喜歡游泳的學生的概率為,

所以喜歡游泳的學生人數為人...................1分

其中女生有20人,則男生有40人,列聯表補充如下:

喜歡游泳

不喜歡游泳

合計

男生

40

10

50

女生

20

30

50

合計

60

40

100

................................................4分

因為................... 7分

所以有99.9%的把握認為喜歡游泳與性別有關......................8分

(2)5名學生中喜歡游泳的3名學生記為,另外2名學生記為1,2,任取2名學生,則所有可能情況為,共10種.........10分

其中恰有1人喜歡游泳的可能情況為,共6種........... 11分

所以,恰好有1人喜歡游泳的概率為............12分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩條不重合的直線和兩個不重合的平面,若,則下列四個命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個數是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設點,動圓經過點且和直線相切,記動圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設曲線上一點的橫坐標為,過的直線交于一點,交軸于點,過點的垂線交于另一點,若的切線,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校隨機抽取100名學生調查寒假期間學生平均每天的學習時間,被調查的學生每天用于學習的時間介于1小時和11小時之間,按學生的學習時間分成5組:第一組,第二組,第三組,第四組,第五組,繪制成如圖所示的頻率分布直方圖.

(1)求學習時間在的學生人數;

(2)現要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機抽取2人交流學習心得,求這2人中至少有1人學習時間在第四組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 已知函數(a為常數).

(Ⅰ)當時,求函數的單調區(qū)間;

(Ⅱ)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數y=x2+(a+2)x﹣3,x∈[a,b]的圖象關于直線x=1對稱.
(1)求a、b的值和函數的零點
(2)當函數f(x)的定義域是[0,3]時,求函數f(x)的值域..

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中, 底面,底面是直角梯形, , ,點上,且

(Ⅰ)已知點上,且,求證:平面平面;

(Ⅱ)當二面角的余弦值為多少時,直線與平面所成的角為?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為,當年產量不足80千件時, (萬元).當年產量不小于80千件時, (萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.

(Ⅰ)寫出年利潤(萬元)關于年產量(千件)的函數解析式;

(Ⅱ)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?

查看答案和解析>>

同步練習冊答案