9.在△ABC中,角A,B,C所對(duì)的邊為a,b,c,已知a=2c,且A-C=$\frac{π}{2}$.
(1)求cosC的值;
(2)當(dāng)b=1時(shí),求c.

分析 (1)由條件得出sinA=sin(C+$\frac{π}{2}$)=cosC=2sinC,結(jié)合sin2C+cos2C=1求cosC的值;
(2)當(dāng)b=1時(shí),由余弦定理求c.

解答 解:(1)A-C=$\frac{π}{2}$,則A=C+$\frac{π}{2}$,
a=2c,由正弦定理得sinA=2sinC,
∴sinA=sin(C+$\frac{π}{2}$)=cosC=2sinC①
又sin2C+cos2C=1②,
由①②得cosC=±$\frac{2\sqrt{5}}{5}$,
根據(jù)條件得cosC=$\frac{2\sqrt{5}}{5}$;
(2)由余弦定理c2=a2+1-2a•$\frac{2\sqrt{5}}{5}$,
∴c2=4c2+1-4c•$\frac{2\sqrt{5}}{5}$,
∴3c2-$\frac{8\sqrt{5}}{5}$c+1=0,
∴c=$\frac{\sqrt{5}}{3}$(小角對(duì)小邊).

點(diǎn)評(píng) 本題考查正弦定理、余弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的部分圖象如圖,且過點(diǎn)$A(\frac{7π}{12},0),B(0,-1)$,則以下結(jié)論不正確的是( 。
A.f(x)的圖象關(guān)于直線$x=-\frac{π}{6}$ 對(duì)稱B.f(x)的圖象關(guān)于點(diǎn)$(\frac{π}{12},0)$對(duì)稱
C.f(x) 在$[-\frac{π}{2},-\frac{π}{3}]$ 上是增函數(shù)D.f(x) 在$[\frac{4π}{3},\frac{3π}{2}]$ 上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.定義在R上的奇函數(shù)f(x),對(duì)任意a,b∈R,a+b≠0,都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)試證明f(x)為R上的增函數(shù);
(2)若不等式f(kx2-6)+f(k-2x)<0在k∈[-1,1]上恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=$\left\{\begin{array}{l}{x{e}^{-{x}^{2}},x≥0}\\{\frac{1}{1+cosx},-1<x<0}\end{array}\right.$,求${∫}_{1}^{4}$f(x-2)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在三棱錐A-BCD中,E,F(xiàn),G分別是AB,AC,BD的中點(diǎn),若AD與BC所成的角是60°,那么∠FEG為( 。
A.60°B.30°C.120°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知O是正方形ABCD對(duì)角線的交點(diǎn),在以O(shè),A,B,C,D這5點(diǎn)中任意一點(diǎn)為起點(diǎn),另一點(diǎn)為終點(diǎn)的所有向量中,與$\overrightarrow{DA}$是平行向量的有( 。
A.$\overrightarrow{CB}$B.$\overrightarrow{DB}$C.$\overrightarrow{BA}$D.$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:tanα=-$\frac{1}{2}$,求$\frac{sinα-2cosα}{3sinα+cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=x2+3x-5lnx,則f(x)的遞減區(qū)間為( 。
A.(-$\frac{5}{2}$,1)B.(-∞,-$\frac{5}{2}$),(1,+∞)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=cos(2x-$\frac{π}{3}$)在x={x|x=kπ+$\frac{π}{6}$k∈Z}時(shí),取到最大值1.

查看答案和解析>>

同步練習(xí)冊(cè)答案