某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識競賽”,先在本校進行選拔測試(滿分150分),若該校有100名學(xué)生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測試的平均成績;
(2)該校推薦選拔測試成績在110以上的學(xué)生代表學(xué)校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學(xué)生中隨機抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.

(1);(2).

解析試題分析:(1)利用頻率分布直方圖求平均值,取各組的中間值,乘以各組的頻率再相加即得,即,其中為第組數(shù)據(jù)的頻率,是第組數(shù)據(jù)的中間值.(2)該校學(xué)生的選拔測試分?jǐn)?shù)在有4人,分別記為A,B,C,D,分?jǐn)?shù)在有2人,分別記為a,b,將從這6人中隨機選取2人的所有可能結(jié)果一一列舉出來:(A,B),(A,C),(A,D),(A,a),(A,b),(B,C),(B,D),(B,a),(B,b),(C,D),(C,a),(C,b),(D,a),(D,b),(a,b),共15個基本事件,找出其中符合題設(shè)條件的基本事件的個數(shù),二者相除即得所求概率.
(1)設(shè)平均成績的估計值為,則:

. 4分
(2)該校學(xué)生的選拔測試分?jǐn)?shù)在有4人,分別記為A,B,C,D,分?jǐn)?shù)在有2人,分別記為a,b,在則6人中隨機選取2人,總的事件有(A,B),(A,C),(A,D),
(A,a),(A,b),(B,C),(B,D),(B,a),(B,b),(C,D),(C,a),(C,b),(D,a),(D,b),(a,b)共15個基本事件,其中符合題設(shè)條件的基本事件有8個.
故選取的這兩人的選拔成績在頻率分布直方圖中處于不同組的概率為.       ..12分
考點:1、頻率分布直方圖;2、古典概型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

近年來,我國很多城市都出現(xiàn)了嚴(yán)重的霧霾天氣.為了更好地保護環(huán)境,2012年國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》,其中規(guī)定:居民區(qū) 的PM2.5的年平均濃度不得超過35微克/立方米.某城市環(huán)保部門在2014年1月1日到 2014年3月31日這90天對某居民區(qū)的PM2. 5平均濃度的監(jiān)測數(shù)據(jù)統(tǒng)計如下:

組別
 PM2.5濃度(微克/立方米)
頻數(shù)(天)
第一組
(0,35]
24
第二組
(35,75]
48
第三組
(75,115]
12
第四組
>115
6
 
(1)在這天中抽取天的數(shù)據(jù)做進一步分析,每一組應(yīng)抽取多少天?
(2)在(I)中所抽取的樣本PM2. 5的平均濃度超過75(微克/立方米)的若干天中,隨 機抽取2天,求至少有一天平均濃度超過115(微克/立方米)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計.按照,,,的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).
頻率分布直方圖                           莖葉圖

(1)求樣本容量n和頻率分布直方圖中x、y的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取2名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,求所抽取的2名同學(xué)來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以下莖葉圖記錄了甲,乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績(滿分為100分).乙組記錄中有一個數(shù)字模糊,無法確認,假設(shè)這個數(shù)字具有隨機性,并在圖中以a表示.

(1)若甲,乙兩個小組的數(shù)學(xué)平均成績相同,求a的值.
(2)求乙組平均成績超過甲組平均成績的概率.
(3)當(dāng)a=2時,分別從甲,乙兩組同學(xué)中各隨機選取一名同學(xué),求這兩名同學(xué)的數(shù)學(xué)成績之差的絕對值為2分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測試指標(biāo)分為:指標(biāo)大于或等于90為一等品,大于或等于小于為二等品,小于為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進行檢測,檢測結(jié)果統(tǒng)計如下:

測試指標(biāo)







3
7
20
40
20
10

5
15
35
35
7
3
 
根據(jù)上表統(tǒng)計得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計算甲生產(chǎn)一件產(chǎn)品A,給工廠帶來盈利不小于30元的概率;
(2)若甲一天能生產(chǎn)20件產(chǎn)品A,乙一天能生產(chǎn)15件產(chǎn)品A,估計甲乙兩人一天生產(chǎn)的35件產(chǎn)品A中三等品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠有工人人,其中名工人參加過短期培訓(xùn)(稱為類工人),另外名工人參加過長期培訓(xùn)(稱為類工人).現(xiàn)用分層抽樣的方法(按類、類分二層)從該工廠的工人中共抽查 名工人,調(diào)查他們的生產(chǎn)能力(此處的生產(chǎn)能力指一天加工的零件數(shù)).
(1)類工人和類工人中各抽查多少工人?
(2)從類工人中的抽查結(jié)果和從類工人中的抽查結(jié)果分別如下表1和表2.
表1

生產(chǎn)能力分組





人數(shù)





表2
生產(chǎn)能力分組




人數(shù)





①求、,再完成下列頻率分布直方圖;
②分別估計類工人和類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù)(同一組
中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某種產(chǎn)品表面進行腐蝕性刻線實驗,得到腐蝕深度y與腐蝕時間x之間相應(yīng)的一組觀察值,如下表:

x/s
5
10
15
20
30
40
50
60
70
90
120
y/μm
6
10
10
13
16
17
19
23
25
29
46
用散點圖及相關(guān)系數(shù)兩種方法判斷x與y的相關(guān)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從發(fā)生汽車碰撞事故的司機中抽取2 000名司機.根據(jù)他們的血液中是否含有酒精以及他們是否對事故負有責(zé)任.將數(shù)據(jù)整理如下:

 
有責(zé)任
無責(zé)任
合計
有酒精
650
150
800
無酒精
700
500
1 200
合計
1 350
650
2 000
那么,司機對事故負有責(zé)任與血液中含有酒精是否有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h).試驗的觀測結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時間:

0.6
1.2
2.7
1.5
2.8
1.8
2.2
2.3
3.2
3.5
2.5
2.6
1.2
2.7
1.5
2.9
3.0
3.1
2.3
2.4
服用B藥的20位患者日平均增加的睡眠時間:
3.2
1.7
1.9
0.8
0.9
2.4
1.2
2.6
1.3
1.4
1.6
0.5
1.8
0.6
2.1
1.1
2.5
1.2
2.7
0.5
(1) 分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪種藥的療效更好?
(2) 根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
A藥
 
B藥
 
0.
1.
2.
3.
 
 

查看答案和解析>>

同步練習(xí)冊答案