7.函數(shù)f(x)(x>0)的導函數(shù)為f′(x),若xf′(x)+f(x)=ex,且f(1)=e,則( 。
A.f(x)的最小值為eB.f(x)的最大值為eC.f(x)的最小值為$\frac{1}{e}$D.f(x)的最大值為$\frac{1}{e}$

分析 設g(x)=xf(x),求導,得到f(x)=$\frac{{e}^{x}}{x}$,再根據(jù)導數(shù)和函數(shù)的最值得關系即可求出.

解答 解:設g(x)=xf(x),
∴g′(x)=xf′(x)+f(x)=ex
∴g(x)=ex,
∴xf(x)=ex,
∴f(x)=$\frac{{e}^{x}}{x}$,
∴f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
令f′(x)=0,解得x=1,
當f′(x)>0,時,解得x>1,函數(shù)f(x)在(1,+∞)單調(diào)遞增,
當f′(x)<0,時,解得0<x<1,函數(shù)f(x)在(1,+∞)單調(diào)遞減,
∴f(x)min=f(1)=e,
故選:A.

點評 本題考查了導數(shù)和函數(shù)的最值得關系,關鍵是構造函數(shù),求出函數(shù)f(x)的表達式,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.直線y=a分別與曲線y=x2-lnx,y=x-2交于點P、Q,則|PQ|的最小值為( 。
A.2B.$\sqrt{2}$C.1D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設函數(shù)f(x)的定義域為[1,2],則函數(shù)f(x)+f(x2)的定義域為(  )
A.[1,2]B.[1,$\sqrt{2}$]C.[-$\sqrt{2}$,$\sqrt{2}$]D.[-$\sqrt{2}$,-1]∪[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知等差數(shù)列{an},Sn是前n項的和,求證:S5,S10-S5,S15-S10成等差數(shù)列.設k∈N*,Sk,S2k-Sk,S3k-S2k成等差數(shù)列嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=a•($\frac{1}{3}$)x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,則實數(shù)c的取值范圍為(  )
A.(0,4)B.[0,4]C.(0,4]D.[0,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.一個多面體的三視圖如圖所示,則這個多面體的面數(shù)及這些面中直角三角形的個數(shù)分別為( 。
A.5和2B.5和3C.5和4D.4和3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若f(x)=x+sinx,則使不等式f(x2-ax)+f(1-x)≤0在x∈[1,3]上成立的實數(shù)a的取值范圍是( 。
A.[1,+∞)B.[$\frac{7}{3}$,+∞)C.(-∞,1]D.(-∞,$\frac{7}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若二次函數(shù)f(x)=x2+1的圖象與曲線C:g(x)=aex+1(a>0)存在公共切線,則實數(shù)a的取值范圍為( 。
A.(0,$\frac{4}{{e}^{2}}$]B.(0,$\frac{8}{{e}^{2}}$]C.[$\frac{4}{{e}^{2}}$,+∞)D.[$\frac{8}{{e}^{2}}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}x(1+mx),x≥0\\ x(1-mx),x<0\end{array}$,若關于x的不等式f(x)>f(x+m)的解集為M,且[-1,1]⊆M,則實數(shù)m的取值范圍是(1-$\sqrt{2}$,0).

查看答案和解析>>

同步練習冊答案