同時(shí)滿足下列條件:①是奇函數(shù)②在[0,1]上是增函數(shù)③在[0,1]上的最小值為0的函數(shù)是(  

  Ay5x         Bysinx2x

  C         D

 

答案:B
提示:

由條件1排除D,由條件2排除A、C.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)y=f(x),如果存在區(qū)間[m,n],同時(shí)滿足下列條件:①f(x)在[m,n]內(nèi)是單調(diào)的;②當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n],則稱[m,n]是該函數(shù)的“夢(mèng)想?yún)^(qū)間”.若函數(shù)f(x)=a-
1
x
(a>0)
存在“夢(mèng)想?yún)^(qū)間”,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為A(-1,0)B(1,0),平面內(nèi)兩點(diǎn)G,M同時(shí)滿足下列條件:①
GA
+
GB
+
GC
=
0
;②|
MA
|=|
MB
|=|
MC
|;③
GM
AB

(1)求△ABC的頂點(diǎn)C的軌跡方程;
(2)過(guò)點(diǎn)P(3,0)的直線l與(1)中軌跡交于不同的兩點(diǎn)E,F(xiàn),求△OEF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇)設(shè)集合Pn={1,2,…,n},n∈N*.記f(n)為同時(shí)滿足下列條件的集合A的個(gè)數(shù):
①A⊆Pn;②若x∈A,則2x∉A;③若x∈?PnA,則2x∉?PnA.
(1)求f(4);
(2)求f(n)的解析式(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b];那么把y=f(x)(x∈D)叫閉函數(shù).
(1)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)=x2是不是閉函數(shù),若是,請(qǐng)找出區(qū)間[a,b],若不是,請(qǐng)另增加一個(gè)條件,使f(x)是閉函數(shù).
(3)若函數(shù)y=k+
x+2
是閉函數(shù),且在定義域內(nèi)是增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出一個(gè)同時(shí)滿足下列條件的函數(shù)f(x):如
f(x)=2cos(
1
2
x+π)+4
f(x)=2cos(
1
2
x+π)+4

①f(x)>0(x∈R)      ②f(x)為周期函數(shù)且最小正周期為T(mén)=4π    ③f(x)是R上的偶函數(shù)   
④f(x)是在(-4π,-2π)上的增函數(shù)  ⑤f(x)的最大值與最小值差不小于4.

查看答案和解析>>

同步練習(xí)冊(cè)答案