【題目】已知橢圓的長軸長為6,離心率為.

1)求橢圓C的標準方程;

2)設橢圓C的左、右焦點分別為,,左、右頂點分別為A,B,點M,N為橢圓C上位于x軸上方的兩點,且,記直線AMBN的斜率分別為,且,求直線的方程.

【答案】12

【解析】

1)根據(jù)長軸長為6,離心率為,可求得的值,即可得答案;

2)設的方程為,直線與橢圓的另一個交點為,利用得到方程,與韋達定理聯(lián)立,求得,進一步求得關于的方程,求出的值,即可得到直線方程.

1)由題意,可得,,

聯(lián)立解得,,

∴橢圓的標準方程為.

2)如圖,由(1)知,

設的方程為,

直線與橢圓的另一個交點為,

,根據(jù)對稱性可得,

聯(lián)立,整理得,

,

,∴,

,

聯(lián)立解得,

,,∴

,∴,

∴直線的方程為,即.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=x3a2+a+2x2+a2a+2x,aR

1)當a=1時,求函數(shù)y=fx)的單調(diào)區(qū)間;

2)求函數(shù)y=fx)的極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,底面為矩形的四棱錐中,底面ABCD,MN分別為ADPC中點.

(1)證明:平面PAB;

(2)求異面直線MNAB所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)xR,實數(shù)a[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),).

(Ⅰ)若fx)≥0在xR上恒成立,求實數(shù)a的取值范圍;

(Ⅱ)若ex≥lnx+m對任意x0恒成立,求證:實數(shù)m的最大值大于2.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是( )

A. 命題,則的逆命題是真命題

B. 命題存在的否定是:任意

C. 命題“pq”為真命題,則命題“p”和命題“q”均為真命題

D. 已知,則的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 .

(1)若上的增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個極值點,判斷函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若關于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;

(2)是否存在實數(shù)使得總成立?若存在,求實數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題:①空間中沒有交點的兩直線是平行直線或異面直線;②原命題和逆命題真假相反;③若,則;④正方形的兩條對角線相等且互相垂直,其中真命題的個數(shù)為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)對12歲兒童瞬時記憶能力進行調(diào)查,瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學生共有40人,下表為該班學生瞬時記憶能力的調(diào)查結果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學生為3.由于部分數(shù)據(jù)丟失,只知道從這40位學生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為.

視覺

視覺記憶能力

偏低

中等

偏高

超常

聽覺記憶

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

1)試確定的值;

2)從40人中任意抽取3人,設具有聽覺記憶能力或視覺記憶能力偏高或超常的學生人數(shù)為,求隨機變量的分布列

查看答案和解析>>

同步練習冊答案