在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),曲線C2的參數(shù)方程為(a>b>0,φ為參數(shù))在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α與C1,C2各有一個(gè)交點(diǎn).當(dāng)α=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)α=時(shí),這兩個(gè)交點(diǎn)重合.
(I)分別說明C1,C2是什么曲線,并求出a與b的值;
(II)設(shè)當(dāng)α=時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)α=-時(shí),l與C1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.
【答案】分析:(I)有曲線C1的參數(shù)方程為(φ為參數(shù)),曲線C2的參數(shù)方程為(a>b>0,φ為參數(shù)),消去參數(shù)的C1是圓,C2是橢圓,并利用.當(dāng)α=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)α=時(shí),這兩個(gè)交點(diǎn)重合,求出a及b.
(II)利用C1,C2的普通方程,當(dāng)α=時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)α=-時(shí),l與C1,C2的交點(diǎn)為A2,B2,利用面積公式求出面積.
解答:解:(Ⅰ)C1是圓,C2是橢圓.
當(dāng)α=0時(shí),射線l與C1,C2交點(diǎn)的直角坐標(biāo)分別為(1,0),(a,0),
因?yàn)檫@兩點(diǎn)間的距離為2,所以a=3
當(dāng)時(shí),射線l與C1,C2交點(diǎn)的直角坐標(biāo)分別為(0,1)(0,b),
因?yàn)檫@兩點(diǎn)重合
所以b=1.
(Ⅱ)C1,C2的普通方程為x2+y2=1和
當(dāng)時(shí),射線l與C1交點(diǎn)A1的橫坐標(biāo)為
與C2交點(diǎn)B1的橫坐標(biāo)為
當(dāng)時(shí),射線l與C1,C2的兩個(gè)交點(diǎn)A2,
B2分別與A1,B1關(guān)于x軸對(duì)稱,因此四邊形A1A2B2B1為梯形.
故四邊形A1A2B2B1的面積為
點(diǎn)評(píng):此題重點(diǎn)考查了消參數(shù),化出曲線的一般方程,及方程的求解思想,還考查了利用條件的其交點(diǎn)的坐標(biāo),利用坐標(biāo)準(zhǔn)確表示出線段長(zhǎng)度進(jìn)而求其面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案