造船廠年造船量20艘,造船艘產(chǎn)值函數(shù)為(單位:萬(wàn)元),成本函數(shù)(單位:萬(wàn)元),又在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為
(1)求利潤(rùn)函數(shù)及邊際利潤(rùn)函數(shù)(利潤(rùn)=產(chǎn)值—成本)
(2)問(wèn)年造船量安排多少艘時(shí),公司造船利潤(rùn)最大
(3)邊際利潤(rùn)函數(shù)的單調(diào)遞減區(qū)間
(1)

(2)每年建造12艘船,年利潤(rùn)最大(3)當(dāng)時(shí),單調(diào)遞減,所以單調(diào)區(qū)間是,且
(1)
;

(2)
,
,有最大值;即每年建造12艘船,年利潤(rùn)最大(8分)
(3),(11分)
所以,當(dāng)時(shí),單調(diào)遞減,所以單調(diào)區(qū)間是,且
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).(1)求函數(shù)內(nèi)的單調(diào)遞增區(qū)間;
(2)若函數(shù)處取到最大值,求的值;
(3)若),求證:方程內(nèi)沒(méi)有實(shí)數(shù)解.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

知函數(shù)
(1)求函數(shù)的反函數(shù)
(2)若時(shí),不等式恒成立,試求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

備選題:已知函數(shù)是定義在上的減函數(shù),并且滿足
①求的值;
②解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的最大值為正實(shí)數(shù),集合,集合。
(1)求
(2)定義的差集:。
設(shè),,均為整數(shù),且。取自的概率,取自 的概率,寫(xiě)出的二組值,使,。
(3)若函數(shù)中, 是(2)中較大的一組,試寫(xiě)出在區(qū)間[,n]上的最    大值函數(shù)的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

佛山某公司生產(chǎn)陶瓷,根據(jù)歷年的情況可知,生產(chǎn)陶瓷每天的固定成本為14000元,每生產(chǎn)一件產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷售量與產(chǎn)量之間的關(guān)系式為
,每件產(chǎn)品的售價(jià)與產(chǎn)量之間的關(guān)系式為

(Ⅰ)寫(xiě)出該陶瓷廠的日銷售利潤(rùn)與產(chǎn)量之間的關(guān)系式;
(Ⅱ)若要使得日銷售利潤(rùn)最大,每天該生產(chǎn)多少件產(chǎn)品,并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知不是常數(shù)函數(shù),對(duì)于的周期是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)的定義域?yàn)镈,若存在非零實(shí)數(shù)使得對(duì)于任意,有,且,則稱為M上的高調(diào)函數(shù)。
如果定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823135404287409.gif" style="vertical-align:middle;" />的函數(shù)上的高調(diào)函數(shù),那么實(shí)數(shù)的取值范圍是     。
如果定義域?yàn)镽的函數(shù)是奇函數(shù),當(dāng)時(shí),,且為R上的4高調(diào)函數(shù),那么實(shí)數(shù)的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案