已知f(x)=6cos2
ωx
2
+
3
sinωx-3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)求ω的值;
(Ⅱ)當(dāng)x∈[0,2]時(shí),求函數(shù)f(x)的值域;
(Ⅲ)若f(x0)=
6
3
5
,且x0∈(-
10
3
,
2
3
),求f(x0-1).
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象,函數(shù)y=Asin(ωx+φ)的圖象變換
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)利用二倍角的余弦公式降冪后化積,由△ABC為正三角形求得函數(shù)的半周期,從而求得周期,則ω的值可求;
(Ⅱ)直接由x的范圍求函數(shù)的值域;
(Ⅲ)由f(x0)=
6
3
5
,結(jié)合(Ⅰ)求得sin(
πx0
4
+
π
3
)=
3
5
,再結(jié)合x(chóng)0∈(-
10
3
,
2
3
)求得cos(
πx0
4
+
π
3
),寫(xiě)出f(x0-1)后展開(kāi)兩角差的正弦得答案.
解答: 解:(Ⅰ)由f(x)=6cos2
ωx
2
+
3
sinωx-3,得:
f(x)=3cosωx+
3
sinωx=2
3
sin(ωx+
π
3
).
又正三角形ABC的高為2
3
,從而B(niǎo)C=4.
∴函數(shù)f(x)的周期T=4×2=8,即
ω
=8,ω=
π
4
;
(Ⅱ)由(Ⅰ)得,f(x)=2
3
sin(
π
4
x+
π
3
).
當(dāng)x∈[0,2]時(shí),
π
4
x+
π
3
∈[
π
3
,
6
]

2
3
sin(
π
4
x+
π
3
)∈[
3
,2
3
]

(Ⅲ)∵f(x0)=
6
3
5
,
由(1)有f(x0)=2
3
sin(
πx0
4
+
π
3
)=
6
3
5
,
即sin(
πx0
4
+
π
3
)=
3
5

由x0∈(-
10
3
2
3
),
πx0
4
+
π
3
∈(-
π
2
,
π
2
),
∴cos(
πx0
4
+
π
3
)=
1-(
3
5
)2
=
4
5

故f(x0-1)=2
3
sin(
π
4
x0-
π
4
+
π
3
)

=2
3
sin[(
π
4
x0+
π
3
)-
π
4
]

=2
3
×(
3
5
×
2
2
-
4
5
×
2
2
)

=-
6
5
點(diǎn)評(píng):本題考查了y=Asin(ωx+φ)的圖象,考查了三角函數(shù)值得求法,考查了兩角和與差的三角函數(shù),解答此體的關(guān)鍵是拆角和配角,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
3-ai
i
(i為虛數(shù)單位且a<0)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(4,a)(a>0)在拋物線C:y2=2px(p>0)上,P點(diǎn)到拋物線C的焦點(diǎn)F的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知圓E:x2+y2=2x,過(guò)圓心E作直線l與圓E和拋物線C自上而下依次交于A、B、C、D,如果|AB|+|CD|=2|BC|,求直線l的方程;
(Ⅲ)過(guò)點(diǎn)Q(4,2)的任一直線(不過(guò)P點(diǎn))與拋物線C交于A、B兩點(diǎn),直線AB與直線y=x+4交于點(diǎn)M,記直線PA、PB、PM的斜率分別為k1、k2、k3,問(wèn)是否存在實(shí)數(shù)λ,使得k1+k2=λk3,若存在,求出λ的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知
AB
=(1,1),
CD
=(-2,-3),設(shè)
BC
=(x,y).
(1)若四邊形ABCD為梯形,求x、y間的函數(shù)的關(guān)系式;
(2)若以上梯形的對(duì)角線互相垂直,求
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-
1
x+1
,g(x)=x2-2ax+4若對(duì)任意x1∈[0,1],存在x2∈[1,2],使f(x1)>g(x2),求實(shí)數(shù)a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,O為總信號(hào)源點(diǎn),A,B,C是三個(gè)居民區(qū),已知A,B都在O的正東方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5
2
km.
(1)求居民區(qū)A與C的距離;
(2)現(xiàn)要經(jīng)過(guò)點(diǎn)O鋪設(shè)一條總光纜直線EF(E在直線OA的上方),并從A,B,C分別鋪設(shè)三條最短分光纜連接到總光纜EF.假設(shè)鋪設(shè)每條分光纜的費(fèi)用與其長(zhǎng)度的平方成正比,比例系數(shù)為m(m為常數(shù)).設(shè)∠AOE=θ(0≤θ<π),鋪設(shè)三條分光纜的總費(fèi)用為w(元).
①求w關(guān)于θ的函數(shù)表達(dá)式;
②求w的最小值及此時(shí)tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)過(guò)點(diǎn)(-
1
2
,-
3
),離心率為
3
2

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)P(0,t)作圓x2+y2=1的切線l交橢圓C于A,B兩點(diǎn),把△AOB(O為坐標(biāo)原點(diǎn))的面積表示為t的函數(shù)f(t),并求函數(shù)f(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)一種產(chǎn)品的成本費(fèi)共由三部分組成:①原材料費(fèi)每件50元;②職工工資支出7500+20x元;③電力與機(jī)器保養(yǎng)等費(fèi)用為 x2-30x+6000元(其中x為產(chǎn)品件數(shù)).
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該產(chǎn)品是供不應(yīng)求的商品,根據(jù)市場(chǎng)調(diào)查,每件產(chǎn)品的銷(xiāo)售價(jià)為Q(x)=1240-
1
30
x2,試問(wèn)當(dāng)產(chǎn)量處于什么范圍時(shí),工廠4處于生產(chǎn)潛力提升狀態(tài)(生產(chǎn)潛力提升狀態(tài)是指如果產(chǎn)量再增加,則獲得的總利潤(rùn)也將隨之增大)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2,-1,2),
b
=(-1,3,-3),
c
=(13,6,λ),若向量
a
b
,
c
共面,則λ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案